期刊文献+
共找到4,854篇文章
< 1 2 243 >
每页显示 20 50 100
Geochemical and Geostatistical Studies for Estimating Gold Grade in Tarq Prospect Area by K-Means Clustering Method 被引量:7
1
作者 Adel Shirazy Aref Shirazi +1 位作者 Mohammad Hossein Ferdossi Mansour Ziaii 《Open Journal of Geology》 2019年第6期306-326,共21页
Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Qu... Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points. 展开更多
关键词 GOLD Tarq k-meanS clustering method Estimation of the ELEMENTS GRADE k-meanS
在线阅读 下载PDF
Comprehensive K-Means Clustering
2
作者 Ethan Xiao 《Journal of Computer and Communications》 2024年第3期146-159,共14页
The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial s... The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial seeds, particularly in complex datasets or datasets with non-spherical clusters. In this paper, a Comprehensive K-Means Clustering algorithm is presented, in which multiple trials of k-means are performed on a given dataset. The clustering results from each trial are transformed into a five-dimensional data point, containing the scope values of the x and y coordinates of the clusters along with the number of points within that cluster. A graph is then generated displaying the configuration of these points using Principal Component Analysis (PCA), from which we can observe and determine the common clustering patterns in the dataset. The robustness and strength of these patterns are then examined by observing the variance of the results of each trial, wherein a different subset of the data keeping a certain percentage of original data points is clustered. By aggregating information from multiple trials, we can distinguish clusters that consistently emerge across different runs from those that are more sensitive or unlikely, hence deriving more reliable conclusions about the underlying structure of complex datasets. Our experiments show that our algorithm is able to find the most common associations between different dimensions of data over multiple trials, often more accurately than other algorithms, as well as measure stability of these clusters, an ability that other k-means algorithms lack. 展开更多
关键词 k-means clustering
在线阅读 下载PDF
Quantitative Method of Classification and Discrimination of a Porous Carbonate Reservoir Integrating K-means Clustering and Bayesian Theory
3
作者 FANG Xinxin ZHU Guotao +2 位作者 YANG Yiming LI Fengling FENG Hong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期176-189,共14页
Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Wes... Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir. 展开更多
关键词 UPSTREAM resource exploration reservoir classification CARBONATE k-means clustering Bayesian discrimination CENOMANIAN-TURONIAN Iraq
在线阅读 下载PDF
Oversampling Method Based on Gaussian Distribution and K-Means Clustering
4
作者 Masoud Muhammed Hassan Adel Sabry Eesa +1 位作者 Ahmed Jameel Mohammed Wahab Kh.Arabo 《Computers, Materials & Continua》 SCIE EI 2021年第10期451-469,共19页
Learning from imbalanced data is one of the greatest challenging problems in binary classification,and this problem has gained more importance in recent years.When the class distribution is imbalanced,classical machin... Learning from imbalanced data is one of the greatest challenging problems in binary classification,and this problem has gained more importance in recent years.When the class distribution is imbalanced,classical machine learning algorithms tend to move strongly towards the majority class and disregard the minority.Therefore,the accuracy may be high,but the model cannot recognize data instances in the minority class to classify them,leading to many misclassifications.Different methods have been proposed in the literature to handle the imbalance problem,but most are complicated and tend to simulate unnecessary noise.In this paper,we propose a simple oversampling method based on Multivariate Gaussian distribution and K-means clustering,called GK-Means.The new method aims to avoid generating noise and control imbalances between and within classes.Various experiments have been carried out with six classifiers and four oversampling methods.Experimental results on different imbalanced datasets show that the proposed GK-Means outperforms other oversampling methods and improves classification performance as measured by F1-score and Accuracy. 展开更多
关键词 Class imbalance OVERSAMPLING GAUSSIAN multivariate distribution k-means clustering
在线阅读 下载PDF
Improved k-means clustering algorithm 被引量:16
5
作者 夏士雄 李文超 +2 位作者 周勇 张磊 牛强 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期435-438,共4页
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a... In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower. 展开更多
关键词 clustering k-means algorithm silhouette coefficient
在线阅读 下载PDF
An efficient enhanced k-means clustering algorithm 被引量:30
6
作者 FAHIM A.M SALEM A.M +1 位作者 TORKEY F.A RAMADAN M.A 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1626-1633,共8页
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista... In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation. 展开更多
关键词 clustering algorithms cluster analysis k-means algorithm Data analysis
在线阅读 下载PDF
Classification of Northeast China Cold Vortex Activity Paths in Early Summer Based on K-means Clustering and Their Climate Impact 被引量:11
7
作者 Yihe FANG Haishan CHEN +3 位作者 Yi LIN Chunyu ZHAO Yitong LIN Fang ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期400-412,共13页
The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the... The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable. 展开更多
关键词 northeastern China early summer Northeast China Cold Vortex classification of activity paths machine learning method k-means clustering high-pressure blocking
在线阅读 下载PDF
Hierarchical hesitant fuzzy K-means clustering algorithm 被引量:21
8
作者 CHEN Na XU Ze-shui XIA Mei-mei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第1期1-17,共17页
Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets ar... Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm. 展开更多
关键词 90B50 68T10 62H30 Hesitant fuzzy set hierarchical clustering k-means clustering intuitionisitc fuzzy set
在线阅读 下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
9
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
在线阅读 下载PDF
Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management 被引量:20
10
作者 Zizheng Guo Yu Shi +2 位作者 Faming Huang Xuanmei Fan Jinsong Huang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期243-261,共19页
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study pres... Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT) model and the K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical landslide-prone area located in northwestern China, was taken as the area of interest to introduce the proposed application procedure. A landslide inventory containing 82 landslides was prepared and subsequently randomly partitioned into two subsets: training data(70% landslide pixels) and validation data(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means cluster algorithm. The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC) curve) of the proposed model was the highest, reaching 0.88,compared with traditional models(support vector machine(SVM) = 0.85, Bayesian network(BN) = 0.81,frequency ratio(FR) = 0.75, weight of evidence(WOE) = 0.76). The landslide frequency ratio and frequency density of the high susceptibility zones were 6.76/km^(2) and 0.88/km^(2), respectively, which were much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without containing more " stable" pixels. Therefore, the obtained susceptibility map is suitable for application to landslide risk management practices. 展开更多
关键词 Landslide susceptibility Frequency ratio C5.0 decision tree k-means cluster Classification Risk management
在线阅读 下载PDF
K-MEANS CLUSTERING FOR CLASSIFICATION OF THE NORTHWESTERN PACIFIC TROPICAL CYCLONE TRACKS 被引量:4
11
作者 余锦华 郑颖青 +2 位作者 吴启树 林金凎 龚振彬 《Journal of Tropical Meteorology》 SCIE 2016年第2期127-135,共9页
Based on the Joint Typhoon Warning Center(JTWC) best-track dataset between 1965 and 2009 and the characteristic parameters including tropical cyclone(TC) position,intensity,path length and direction,a method for objec... Based on the Joint Typhoon Warning Center(JTWC) best-track dataset between 1965 and 2009 and the characteristic parameters including tropical cyclone(TC) position,intensity,path length and direction,a method for objective classification of the Northwestern Pacific tropical cyclone tracks is established by using k-means Clustering.The TC lifespan,energy,active season and landfall probability of seven clusters of tropical cyclone tracks are comparatively analyzed.The characteristics of these parameters are quite different among different tropical cyclone track clusters.From the trend of the past two decades,the frequency of the western recurving cluster(accounting for 21.3% of the total) increased,and the lifespan elongated slightly,which differs from the other clusters.The annual variation of the Power Dissipation Index(PDI) of most clusters mainly depended on the TC intensity and frequency.However,the annual variation of the PDI in the northwestern moving then recurving cluster and the pelagic west-northwest moving cluster mainly depended on the frequency. 展开更多
关键词 tropical cyclone classification of tracks k-means clustering character of cluster
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
12
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted k-means clustering.
在线阅读 下载PDF
Optimization of constitutive parameters of foundation soils k-means clustering analysis 被引量:7
13
作者 Muge Elif Orakoglu Cevdet Emin Ekinci 《Research in Cold and Arid Regions》 CSCD 2013年第5期626-636,共11页
The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and ... The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils. 展开更多
关键词 foundation soil regression model k-means clustering analysis
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
14
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
在线阅读 下载PDF
Using an Improved Clustering Method to Detect Anomaly Activities 被引量:3
15
作者 LI Han ZHANG Nan BAO Lihui 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1814-1818,共5页
In this paper, an improved k-means based clustering method (IKCM) is proposed. By refining the initial cluster centers and adjusting the number of clusters by splitting and merging procedures, it can avoid the algor... In this paper, an improved k-means based clustering method (IKCM) is proposed. By refining the initial cluster centers and adjusting the number of clusters by splitting and merging procedures, it can avoid the algorithm resulting in the situation of locally optimal solution and reduce the number of clusters dependency. The IKCM has been implemented and tested. We perform experiments on KDD-99 data set. The comparison experiments with H-means+also have been conducted. The results obtained in this study are very encouraging. 展开更多
关键词 clustering analysis anomaly detection intrusion detection k-meanS
在线阅读 下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
16
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 k-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
在线阅读 下载PDF
13 Galactic Star Clusters in Gaia DR3 Identified by An Improved FoF and UPMASK Hybrid Method Using MvC
17
作者 Huanbin Chi Zebang Lai +2 位作者 Feng Wang Zhongmu Li Ying Mei 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第11期243-258,共16页
Open clusters(OCs)serve as invaluable tracers for investigating the properties and evolution of stars and galaxies.Despite recent advancements in machine learning clustering algorithms,accurately discerning such clust... Open clusters(OCs)serve as invaluable tracers for investigating the properties and evolution of stars and galaxies.Despite recent advancements in machine learning clustering algorithms,accurately discerning such clusters remains challenging.We re-visited the 3013 samples generated with a hybrid clustering algorithm of FoF and pyUPMASK.A multi-view clustering(MvC)ensemble method was applied,which analyzes each member star of the OC from three perspectives—proper motion,spatial position,and composite views—before integrating the clustering outcomes to deduce more reliable cluster memberships.Based on the MvC results,we further excluded cluster candidates with fewer than ten member stars and obtained 1256 OC candidates.After isochrone fitting and visual inspection,we identified 506 candidate OCs in the Milky Way.In addition to the 493 previously reported candidates,we finally discovered 13 high-confidence new candidate clusters. 展开更多
关键词 GALAXIES star clusters GENERAL (Galaxy:)open clusters and associations GENERAL methods data analysis
在线阅读 下载PDF
Traffic Anomaly DetectionMethod Based on Improved GRU and EFMS-Kmeans Clustering 被引量:3
18
作者 Yonghua Huo Yi Cao +3 位作者 Zhihao Wang Yu Yan Zhongdi Ge Yang Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期1053-1091,共39页
In recent years,with the continuous development of information technology and the rapid growth of network scale,network monitoring and management become more and more important.Network traffic is an important part of ... In recent years,with the continuous development of information technology and the rapid growth of network scale,network monitoring and management become more and more important.Network traffic is an important part of network state.In order to ensure the normal operation of the network,improve the availability of the network,find network faults in time and deal with network attacks;it is necessary to detect the abnormal traffic in the network.Abnormal traffic detection is of great significance in the actual network management.Therefore,in order to improve the accuracy and efficiency of network traffic anomaly detection,this paper proposes a comprehensive anomaly detection method based on improved GRU traffic prediction and improved K-means clustering,and cascade the traffic prediction and clustering to achieve the purpose of anomaly detection.Firstly,an improved highway-GRU algorithm HS-GRU(An improved Gate Recurrent Unit neural network based on Highway network and STL algorithm,HS-GRU)is proposed,which combines STL decomposition algorithm with highway GRU neural network and uses this improved algorithm to predict traffic.And then,we proposed the EFMS-Kmeans algorithm(An improved clustering algorithmthat combined Mean Shift algorithmbased on electrostatic force with K-means clustering)to solve the shortcoming of the traditional K-means clustering which cannot automatically determine the number of clustering.The sum of the squared errors(SSE)method and the contour coefficient method were used to double test the clustering effect.After determining the clustering center,the potential energy gradient was directly used for anomaly detection by using the threshold method,which considered the local characteristics of the data and ensured the accuracy of anomaly detection.The simulation results show that the anomaly detection algorithm based on HS-GRU and EFMS-Kmeans clustering proposed in this paper can effectively improve the accuracy of flow anomaly detection and has important application value. 展开更多
关键词 Anomaly detection gated recurrent unit clustering mean shift k-meanS
在线阅读 下载PDF
Distributed Document Clustering Analysis Based on a Hybrid Method 被引量:2
19
作者 J.E.Judith J.Jayakumari 《China Communications》 SCIE CSCD 2017年第2期131-142,共12页
Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great d... Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great demand to deal with large volume of data. The computational requirements for bringing such growing amount data to a central site for clustering are complex. The proposed algorithm uses optimal centroids for K.Means clustering based on Particle Swarm Optimization(PSO).PSO is used to take advantage of its global search ability to provide optimal centroids which aids in generating more compact clusters with improved accuracy. This proposed methodology utilizes Hadoop and Map Reduce framework which provides distributed storage and analysis to support data intensive distributed applications. Experiments were performed on Reuter's and RCV1 document dataset which shows an improvement in accuracy with reduced execution time. 展开更多
关键词 distributed document clustering HADOOP k-meanS PSO MAPREDUCE
在线阅读 下载PDF
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:4
20
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
在线阅读 下载PDF
上一页 1 2 243 下一页 到第
使用帮助 返回顶部