Background:Globally,breast cancer constitutes the predominant malignancy in women.Abnormal regulation of epigenetic factors plays a key role in the development of tumors.Anti-apoptosis is a characteristic of tumor cel...Background:Globally,breast cancer constitutes the predominant malignancy in women.Abnormal regulation of epigenetic factors plays a key role in the development of tumors.Anti-apoptosis is a characteristic of tumor cells.Therefore,exploring and identifying relevant epigenetic factors that regulate the apoptosis of tumor cells is the foundation for clarifying the pathogenesis of tumors and achieving precision antitumor therapy.Method:This study focused on exploring the epigenetic mechanism of FOXK1 in the development of estrogen receptor-positive(ER^(+))breast cancer.We used overexpressing FLAG-FOXK1 MCF-7 cells to perform silver staining mass spectrometry analysis and conducted Co-IP experiments to verify the interactions.ChIP-seq was conducted on MCF-7 cells to examine FOXK1's binding across the genome and its transcriptional target sites.To validate the ChIP-seq results,qChIP,western blotting,and quantitative polymerase chain reaction(qPCR)were performed.Through TUNEL assay,cell counting assay,colony formation assay,and the mouse xenograft models,the effect of FOXK1 on breast cancer progression was detected.Finally,by analyzing online databases,the correlation between FOXK1 and the survival of breast cancer patients was examined.Results:FOXK1 interacts with the REST/CoREST transcriptional corepression complex to transcriptionally inhibit target genes representing the apoptotic pathway.Abnormally high expression of FOXK1 prevents the apoptosis of ER+breast cancer cells in vitro and promotes ER+breast tumor progression in vivo.Furthermore,the expression of FOXK1 is negatively correlated with the survival of ER+breast cancer patients.Conclusion:FOXK1 promotes ER+breast carcinogenesis through anti-apoptosis and acts as a potential target for ER+breast cancer treatment.展开更多
Additional sex combs-like 1(ASXL1)interacts with BRCA1-associated protein 1(BAP1)deubiquitinase to oppose the polycomb repressive complex 1(PRC1)-mediated histone H2A ubiquitylation.Germline BAP1 mutations are found i...Additional sex combs-like 1(ASXL1)interacts with BRCA1-associated protein 1(BAP1)deubiquitinase to oppose the polycomb repressive complex 1(PRC1)-mediated histone H2A ubiquitylation.Germline BAP1 mutations are found in a spectrum of human malignancies,while ASXL1 mutations recurrently occur in myeloid neoplasm and are associated with poor prognosis.Nearly all ASXL1 mutations are heterozygous frameshift or nonsense mutations in the middle or to a less extent the C-terminal region,resulting in the production of C-terminally truncated mutant ASXL1 proteins.How ASXL1 regulates specific target genes and how the C-terminal truncation of ASXL1 promotes leukemogen-esis are unclear.Here,we report that ASXL1 interacts with forkhead transcription factors FOXK1 and FOXK2 to regulate a subset of FOXK1/K2 target genes.We show that the C-terminally truncated mutant ASXL1 proteins are expressed at much higher levels than the wild-type protein in ASXL1 heterozygous leukemia cells,and lose the ability to interact with FOXK1/K2.Specific deletion of the mutant allele eliminates the expression of C-termi-nally truncated ASXL1 and increases the association of wild-type ASXL1 with BAP1,thereby restoring the expression of BAP1-ASXL1-FOXK1/K2 target genes,particularly those involved in glucose metabolism,oxygen sensing,and JAK-STAT3 signaling pathways.In addition to FOXK1/K2,we also identify other DNA-bind-ing transcription regulators including transcription factors(TFs)which interact with wild-type ASXL1,but not C-terminally truncated mutant.Our results suggest that ASXL1 mutations result in neomorphic alleles that contribute to leukemogenesis at least in part through dominantly inhibiting the wild-type ASXL1 from interacting with BAP1 and thereby impairing the function of ASXL1-BAP1-TF in regulating target genes and leukemia cell growth.展开更多
叉头框K(forkhead box class K,FOXK)蛋白家族是一类进化保守的转录因子,近年来被认为是多种癌症的关键转录调控因子。FOXK家族成员参与介导了广泛的生物学过程,包括细胞增殖、分化、凋亡、自噬、细胞周期、DNA损伤和肿瘤发生。FOXK1基...叉头框K(forkhead box class K,FOXK)蛋白家族是一类进化保守的转录因子,近年来被认为是多种癌症的关键转录调控因子。FOXK家族成员参与介导了广泛的生物学过程,包括细胞增殖、分化、凋亡、自噬、细胞周期、DNA损伤和肿瘤发生。FOXK1基因作为转录因子参与了多种肿瘤发生、发展等过程的调控,其基因结构及表观遗传学的异常与人类多种疾病的发生发展密切相关。研究发现,FOXK1在大多数恶性肿瘤中充当癌基因的角色,但其相关发病机制尚未明确。因此,对于FOXK1蛋白功能的深入研究,有助于更好地揭示相关疾病的发病机制,为疾病的预防和治疗提供理论依据。本文就国内外FOXK1蛋白在不同肿瘤中的主要作用的研究进展进行综述。展开更多
基金Beijing High-Level Innovation and Entrepreneurship Talent Support Plan,Grant/Award Number:G04070024National Natural Science Foundation of China,Grant/Award Number:82073122。
文摘Background:Globally,breast cancer constitutes the predominant malignancy in women.Abnormal regulation of epigenetic factors plays a key role in the development of tumors.Anti-apoptosis is a characteristic of tumor cells.Therefore,exploring and identifying relevant epigenetic factors that regulate the apoptosis of tumor cells is the foundation for clarifying the pathogenesis of tumors and achieving precision antitumor therapy.Method:This study focused on exploring the epigenetic mechanism of FOXK1 in the development of estrogen receptor-positive(ER^(+))breast cancer.We used overexpressing FLAG-FOXK1 MCF-7 cells to perform silver staining mass spectrometry analysis and conducted Co-IP experiments to verify the interactions.ChIP-seq was conducted on MCF-7 cells to examine FOXK1's binding across the genome and its transcriptional target sites.To validate the ChIP-seq results,qChIP,western blotting,and quantitative polymerase chain reaction(qPCR)were performed.Through TUNEL assay,cell counting assay,colony formation assay,and the mouse xenograft models,the effect of FOXK1 on breast cancer progression was detected.Finally,by analyzing online databases,the correlation between FOXK1 and the survival of breast cancer patients was examined.Results:FOXK1 interacts with the REST/CoREST transcriptional corepression complex to transcriptionally inhibit target genes representing the apoptotic pathway.Abnormally high expression of FOXK1 prevents the apoptosis of ER+breast cancer cells in vitro and promotes ER+breast tumor progression in vivo.Furthermore,the expression of FOXK1 is negatively correlated with the survival of ER+breast cancer patients.Conclusion:FOXK1 promotes ER+breast carcinogenesis through anti-apoptosis and acts as a potential target for ER+breast cancer treatment.
基金the National Key R&D Program of China(No.2016YFA0501800 to D.Y.2016YFC1303303 to C.Y.)+5 种基金the NSFC Grant(No.31871431 and No.31821002 to D.Y.81572761,81772655 and 81972646 to Y.T.)the Innovative Research Team of High-Level Local Universities in Shanghai(to D.Y.)the Recruitment Program of Global Experts of China(Y.T.)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(V.T.)Shanghai Rising-Star Program(Y.T.).
文摘Additional sex combs-like 1(ASXL1)interacts with BRCA1-associated protein 1(BAP1)deubiquitinase to oppose the polycomb repressive complex 1(PRC1)-mediated histone H2A ubiquitylation.Germline BAP1 mutations are found in a spectrum of human malignancies,while ASXL1 mutations recurrently occur in myeloid neoplasm and are associated with poor prognosis.Nearly all ASXL1 mutations are heterozygous frameshift or nonsense mutations in the middle or to a less extent the C-terminal region,resulting in the production of C-terminally truncated mutant ASXL1 proteins.How ASXL1 regulates specific target genes and how the C-terminal truncation of ASXL1 promotes leukemogen-esis are unclear.Here,we report that ASXL1 interacts with forkhead transcription factors FOXK1 and FOXK2 to regulate a subset of FOXK1/K2 target genes.We show that the C-terminally truncated mutant ASXL1 proteins are expressed at much higher levels than the wild-type protein in ASXL1 heterozygous leukemia cells,and lose the ability to interact with FOXK1/K2.Specific deletion of the mutant allele eliminates the expression of C-termi-nally truncated ASXL1 and increases the association of wild-type ASXL1 with BAP1,thereby restoring the expression of BAP1-ASXL1-FOXK1/K2 target genes,particularly those involved in glucose metabolism,oxygen sensing,and JAK-STAT3 signaling pathways.In addition to FOXK1/K2,we also identify other DNA-bind-ing transcription regulators including transcription factors(TFs)which interact with wild-type ASXL1,but not C-terminally truncated mutant.Our results suggest that ASXL1 mutations result in neomorphic alleles that contribute to leukemogenesis at least in part through dominantly inhibiting the wild-type ASXL1 from interacting with BAP1 and thereby impairing the function of ASXL1-BAP1-TF in regulating target genes and leukemia cell growth.
文摘叉头框K(forkhead box class K,FOXK)蛋白家族是一类进化保守的转录因子,近年来被认为是多种癌症的关键转录调控因子。FOXK家族成员参与介导了广泛的生物学过程,包括细胞增殖、分化、凋亡、自噬、细胞周期、DNA损伤和肿瘤发生。FOXK1基因作为转录因子参与了多种肿瘤发生、发展等过程的调控,其基因结构及表观遗传学的异常与人类多种疾病的发生发展密切相关。研究发现,FOXK1在大多数恶性肿瘤中充当癌基因的角色,但其相关发病机制尚未明确。因此,对于FOXK1蛋白功能的深入研究,有助于更好地揭示相关疾病的发病机制,为疾病的预防和治疗提供理论依据。本文就国内外FOXK1蛋白在不同肿瘤中的主要作用的研究进展进行综述。