To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process...The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process,the warehousing system has urgent needs such as uncertain production scale and rapid iteration and optimization of business processes.Therefore,the requirements and architecture of complex discrete warehousing systems such as flexible satellite batch production lines are studied.The physical system of intelligent equipment is abstracted as a digital model to form the underlying module,and a digital fusion framework of“business domain+middleware platform+intelligent equipment information model”is constructed.The granularity of microservice splitting is calculated based on the dynamic correlation relationship between user access instances and database table structures.The general warehousing functions of the platform are divided to achieve module customization,addition,and configuration.An open discrete warehousing system based on microservices is designed.Software architecture and design develop complex discrete warehousing systems based on the SpringCloud framework.This architecture achieves the decoupling of business logic and physical hardware,enhances the maintainability and scalability of the system,and greatly improves the system’s adaptability to different complex discrete warehousing business scenarios.展开更多
This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl...Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou...Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.展开更多
Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behav...Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks are highly necessary.In this paper,we propose a heterogeneous discrete neural network(HDNN)consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron.These two neurons are coupled mutually by two discrete memristors and the synaptic crosstalk is considered.The impact of crosstalk strength on the firing behavior of the HDNN is explored through bifurcation diagrams and Lyapunov exponents.It is observed that the HDNN exhibits different coexisting attractors under varying crosstalk strengths.Furthermore,the influence of different crosstalk strengths on the synchronized firing of the HDNN is investigated,revealing a gradual attainment of phase synchronization between the two discrete neurons as the crosstalk strength decreases.展开更多
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP...In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.展开更多
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten...Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.展开更多
Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot matc...Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional(3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.展开更多
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr...The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.展开更多
Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investiga...Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investigated.This paper develops a numerical model of the HCTST using the discrete element method(DEM).The method of bonded spheres in a hexagonal arrangement is proposed to generate flexible boundaries that can achieve real-time adjustment of the internal and external cell pressures and capture the inhomogeneous deformation in the radial direction during shearing.Representative angular particles are selected from Toyoura sand and reproduced in this model to approximate real sand particles.The model is then validated by comparing numerical and experimental results of HCTSTs on Toyoura sand with different major principal stress directions.Next,a series of HCTSTs with different combinations of major principal stress direction(a)and intermediate principal stress ratio(b)is simulated to quantitatively characterize the sand behavior under different shear conditions.The results show that the shaped particles are horizontally distributed before shearing,and the initial anisotropic packing structure further results in different stressestrain curves in cases with different a and b values.The distribution of force chains is affected by both a and b during the shear process,together with the formation of the shear bands in different patterns.The contact normal anisotropy and contact force anisotropy show different evolution patterns when either a or b varies,resulting in the differences in the non-coaxiality and other macroscopic responses.This study improves the understanding of the macroscopic response of sand from a microscopic perspective and provides valuable insights for the constitutive modeling of sand.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars u...Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compressio...To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.展开更多
Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteris...Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteristics have a substantial impact on travel behavior(TB),which makes it important to take into account while studying transport options.Traditional statistical techniques frequently presume linear correlations,but real-world data rarely follows these presumptions,which may make it harder to grasp the complex interactions.Thorough systematic review was conducted to examine how machine learning(ML)approaches might successfully capture nonlinear correlations that conventional methods may ignore to overcome such challenges.An in-depth analysis of discrete choice models(DCM)and several ML algorithms,datasets,model validation strategies,and tuning techniques employed in previous research is carried out in the present study.Besides,the current review also summarizes DCM and ML models to predict TMC and recognize the determinants of TB in an urban area for different transport modes.The two primary goals of our study are to establish the present conceptual frameworks for the factors influencing the TMC for daily activities and to pinpoint methodological issues and limitations in previous research.With a total of 39 studies,our findings shed important light on the significance of considering factors that influence the TMC.The adjusted kernel algorithms and hyperparameter-optimized ML algorithms outperform the typical ML algorithms.RF(random forest),SVM(support vector machine),ANN(artificial neural network),and interpretable ML algorithms are the most widely used ML algorithms for the prediction of TMC where RF achieved an R2 of 0.95 and SVM achieved an accuracy of 93.18%;however,the adjusted kernel enhanced the accuracy of SVM 99.81%which shows that the interpretable algorithms outperformed the typical algorithms.The sensitivity analysis indicates that the most significant parameters influencing TMC are the age,total trip time,and the number of drivers.展开更多
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ...To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.展开更多
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process,the warehousing system has urgent needs such as uncertain production scale and rapid iteration and optimization of business processes.Therefore,the requirements and architecture of complex discrete warehousing systems such as flexible satellite batch production lines are studied.The physical system of intelligent equipment is abstracted as a digital model to form the underlying module,and a digital fusion framework of“business domain+middleware platform+intelligent equipment information model”is constructed.The granularity of microservice splitting is calculated based on the dynamic correlation relationship between user access instances and database table structures.The general warehousing functions of the platform are divided to achieve module customization,addition,and configuration.An open discrete warehousing system based on microservices is designed.Software architecture and design develop complex discrete warehousing systems based on the SpringCloud framework.This architecture achieves the decoupling of business logic and physical hardware,enhances the maintainability and scalability of the system,and greatly improves the system’s adaptability to different complex discrete warehousing business scenarios.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
基金The authors wish to thank National Key R&D Program of China(Grant No.2022YFC308100)the National Nature Science Foundation of China(Grant Nos.42107172 and 42072303)for financial support.
文摘Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
文摘Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.
基金Project supported by the Key Projects of Hunan Provincial Department of Education(Grant No.23A0133)the Natural Science Foundation of Hunan Province(Grant No.2022JJ30572)the National Natural Science Foundations of China(Grant No.62171401).
文摘Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks are highly necessary.In this paper,we propose a heterogeneous discrete neural network(HDNN)consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron.These two neurons are coupled mutually by two discrete memristors and the synaptic crosstalk is considered.The impact of crosstalk strength on the firing behavior of the HDNN is explored through bifurcation diagrams and Lyapunov exponents.It is observed that the HDNN exhibits different coexisting attractors under varying crosstalk strengths.Furthermore,the influence of different crosstalk strengths on the synchronized firing of the HDNN is investigated,revealing a gradual attainment of phase synchronization between the two discrete neurons as the crosstalk strength decreases.
基金supported by the National Natural Science Foundation of China(Grant No.52201323).
文摘In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.
基金supported by the National Natural Science Foundation of China (No. 51509211)the China Postdoctoral Science Foundation (No. 2016M602863)+5 种基金the Natural Science Foundation of Shaanxi Province (Nos. 2024JC-YBMS-354 and 2021JLM-51)the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province (No. 2018031)the Social Development Foundation of Shaanxi Province (No. 2015SF260)the Postdoctoral Science Foundation of Shaanxi Province (No. 2017BSHYDZZ50)Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University (No. SZ02306)Xi’an Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology (No. XKLGUEKF21-02)
文摘Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.
基金Project supported by the China Postdoctoral Science Foundation (Grant No.2023M732745)the National Natural Science Foundations of China (Grant Nos.61974110 and 62104177)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant Nos.QTZX23022 and JBF211103)the Cooperation Program of XDU– Chongqing IC Innovation Research Institute (Grant No.CQ IRI-2022CXY-Z07)。
文摘Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional(3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.
基金the support of Texas A&M University at Qatar for the 2022 Sixth Cycle Seed Grant Project。
文摘The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.
基金supports from the National Key R&D Program of China(Grant No.2023YFC3009400)Research Grants Council of Hong Kong(Grant Nos.15220221 and 15229223).
文摘Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investigated.This paper develops a numerical model of the HCTST using the discrete element method(DEM).The method of bonded spheres in a hexagonal arrangement is proposed to generate flexible boundaries that can achieve real-time adjustment of the internal and external cell pressures and capture the inhomogeneous deformation in the radial direction during shearing.Representative angular particles are selected from Toyoura sand and reproduced in this model to approximate real sand particles.The model is then validated by comparing numerical and experimental results of HCTSTs on Toyoura sand with different major principal stress directions.Next,a series of HCTSTs with different combinations of major principal stress direction(a)and intermediate principal stress ratio(b)is simulated to quantitatively characterize the sand behavior under different shear conditions.The results show that the shaped particles are horizontally distributed before shearing,and the initial anisotropic packing structure further results in different stressestrain curves in cases with different a and b values.The distribution of force chains is affected by both a and b during the shear process,together with the formation of the shear bands in different patterns.The contact normal anisotropy and contact force anisotropy show different evolution patterns when either a or b varies,resulting in the differences in the non-coaxiality and other macroscopic responses.This study improves the understanding of the macroscopic response of sand from a microscopic perspective and provides valuable insights for the constitutive modeling of sand.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192214 and 12222209).
文摘Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金National Natural Science Foundation Joint Fund Project(U21A20111)National Natural Science Foundation of China(51974112,51674108).
文摘To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.
文摘Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteristics have a substantial impact on travel behavior(TB),which makes it important to take into account while studying transport options.Traditional statistical techniques frequently presume linear correlations,but real-world data rarely follows these presumptions,which may make it harder to grasp the complex interactions.Thorough systematic review was conducted to examine how machine learning(ML)approaches might successfully capture nonlinear correlations that conventional methods may ignore to overcome such challenges.An in-depth analysis of discrete choice models(DCM)and several ML algorithms,datasets,model validation strategies,and tuning techniques employed in previous research is carried out in the present study.Besides,the current review also summarizes DCM and ML models to predict TMC and recognize the determinants of TB in an urban area for different transport modes.The two primary goals of our study are to establish the present conceptual frameworks for the factors influencing the TMC for daily activities and to pinpoint methodological issues and limitations in previous research.With a total of 39 studies,our findings shed important light on the significance of considering factors that influence the TMC.The adjusted kernel algorithms and hyperparameter-optimized ML algorithms outperform the typical ML algorithms.RF(random forest),SVM(support vector machine),ANN(artificial neural network),and interpretable ML algorithms are the most widely used ML algorithms for the prediction of TMC where RF achieved an R2 of 0.95 and SVM achieved an accuracy of 93.18%;however,the adjusted kernel enhanced the accuracy of SVM 99.81%which shows that the interpretable algorithms outperformed the typical algorithms.The sensitivity analysis indicates that the most significant parameters influencing TMC are the age,total trip time,and the number of drivers.
基金supported by the National Key R&D Program of China (Grant No.2022YFC3003401)the National Natural Science Foundation of China (Grant Nos.42041006 and 42377137).
文摘To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.