期刊文献+

Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method

在线阅读 下载PDF
导出
摘要 To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
出处 《Energy Engineering》 EI 2025年第1期185-201,共17页 能源工程(英文)
基金 funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701) the CNOOC Research Institute(No.2020PFS-03).
  • 相关文献

参考文献4

二级参考文献26

  • 1张学军.压裂支撑剂球度与圆度测量分析[J].辽宁工程技术大学学报(自然科学版),2006,25(6):827-829. 被引量:5
  • 2Britt L, Smith M, Haddad Z, et al. Waterfracs: We do need proppant after all[C]. SPE 102227, 2006.
  • 3Palisch T. Vincent M, Handren P. Slickwater fracturing: Food for thought[J]. SPE Production & Operations, 2010, 25(3) : 327-344.
  • 4Gadde P B, Sharma M M. The impact of proppant retar- dation on propped fracture length[C]. SPE 97106, 2005.
  • 5Wang J, Joseph D D, Patankar N A, et al. Bi-power law correlations for sediment transport in pressure driven channel flows[J]. International Journal of Multiphase Flow, 2003,29 (3): 475-494.
  • 6Eskin D. Modeling non-Newtonian slurry convection in a vertical fracture[J]. Chemical Engineering Science, 2009. 64(7) : 1591-1599.
  • 7Tsai K, Fonseca E. Degaleesan S. Advanced computa- tional modeling of proppant settling in water fractures for shale gas production[C]. SPE 151607, 2012.
  • 8Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas-solid flows[J]. Journal of Fluid Mechanics, 2001,445 ( 1 ) : 151-185.
  • 9Wang W. Li J. Simulation of gas-solid two-phase flow by a multi-scale CFD approach of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62 ( 1 ) : 208-231.
  • 10Srivastava A, Sundaresan S. Analysis of a frictional- kinetic model for gas-particle flow[J]. Powder Technolo- gy, 2003, 129( 1 ) : 72-85.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部