The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_...The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.展开更多
Storage of CO2 in saline aquifers is a viable option for reducing the amount of CO2 released to the atmosphere. This paper provides an overall review of CO2 sequestration in saline aquifers. First, the principles of C...Storage of CO2 in saline aquifers is a viable option for reducing the amount of CO2 released to the atmosphere. This paper provides an overall review of CO2 sequestration in saline aquifers. First, the principles of CO2 sequestration are presented, including CO2 phase behavior, CO2-water-rock interaction, and CO2 trapping mechanisms. Then storage capacity and CO2 injectivity are discussed as the main determinants of the storage potential of saline aquifers. Next, a site section process is addressed considering basin characteristics, reservoir characteristics, and economic and social concerns. Three main procedures are then presented to investigate the suitability of a site for CO2 sequestration, including site screening, detailed site characterization, and pilot field-scale test. The methods for these procedures are also presented, such as traditional site characterization methods, laboratory experiments, and numerical simulation. Finally, some operational aspects of sequestration are discussed, including well type, injection rate, CO2 purity, and injection strategy.展开更多
Carbon capture and storage (CCS) technology has been considered as an important method for reducing greenhouse gas emissions and for mitigating global climate change. Three primary options are being considered for l...Carbon capture and storage (CCS) technology has been considered as an important method for reducing greenhouse gas emissions and for mitigating global climate change. Three primary options are being considered for large-scale storage of CO2 in subsurface formations: oil and gas reservoirs, deep saline aquifers, and coal beds. There are very many large saline aquifers around the world, which could make a big contribution to mitigating global warming. However, we have much less understanding of saline aquifers than oil and gas reservoirs. Several mechanisms are involved in the storage of CO2 in deep saline aquifers, but the ultimate goal of injection of CO2 into the aquifers containing salt water is to dissolve the CO2 in the water. So it is important to study the solubility trapping and sensitivity factors of CO2 in saline aquifers. This paper presents results of modeling CO2 storage in a saline aquifer using the commercial reservoir simulator ECLIPSE. The objective of this study was to better understand the CO2/brine phase behavior (PVT properties) and quantitatively estimate the most important CO2 storage mechanism in brine-solubility trapping. This would provide a tool by performing theoretical and numerical studies that help to understand the feasibility of CO2 geological storage. A 3-dimensional, 2-phase (water/gas) conceptional reservoir model used finite, homogenous and isothermal formations into which CO2 is injected at a constant rate. The effects of main parameters were studied, including the vertical to horizontal permeability ratio kv/kh, salinity, and residual phase saturations. The results show that the vertical to horizontal permeability ratio has a significant effect on CO2 storage. Moreover, more CO2 dissolves in the brine at lower kv/kh values.展开更多
According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, consideri...According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, considering geological,engineering and economic factors. The four scales include basin scale, depression scale, play scale and trap scale, and the three levels include theoretical storage capacity, engineering storage capacity, and economic storage capacity. The theoretical storage capacity can be divided into four trapping mechanisms, i.e. structural & stratigraphic trapping, residual trapping, solubility trapping and mineral trapping, depending upon the geological parameters, reservoir conditions and fluid properties in the basin. The engineering storage capacity is affected by the injectivity, storage security pressure, well number, and injection time.The economic storage capacity mainly considers the carbon pricing yield, drilling investment, and operation cost, based on the break-even principle. Application of the method for saline aquifer in the Gaoyou sag of the Subei Basin reveals that the structural & stratigraphic trapping occupies the largest proportion of the theoretical storage capacity, followed by the solubility trapping and the residual trapping, and the mineral trapping takes the lowest proportion. The engineering storage capacity and the economic storage capacity are significantly lower than the theoretical storage capacity when considering the constrains of injectivity, security and economy, respectively accounting for 21.0% and 17.6% of the latter.展开更多
针对全球变暖问题,众多国家在巴黎气候变化大会上签署的协定为后续碳排放和控制气温上升提供了新思路。碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)是处理过度排放CO_(2)的方法之一。作为CO_(2)封存方法之一,咸...针对全球变暖问题,众多国家在巴黎气候变化大会上签署的协定为后续碳排放和控制气温上升提供了新思路。碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)是处理过度排放CO_(2)的方法之一。作为CO_(2)封存方法之一,咸水层封存具有储层分布广、与碳排放源匹配性好、封存潜力大、环境影响小的特点。本文从咸水层封存中的构造、毛细管、溶解和矿化封存这4种主要机理出发,从盖层地质条件、储层物性参数、CO_(2)纯度、封存操作4种主控因素入手,结合全球应用咸水层进行CO_(2)封存的工程项目案例,通过分析和对比全球咸水层封存项目实施的地质构造背景、封存过程、封存潜力以及环境监测方法等,总结适宜CO_(2)封存的地点和合适的监测机制,以期为中国咸水层CO_(2)地质封存工作提供借鉴。展开更多
To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters d...To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters during and after injecting CO_(2),because it can detect whether the injected CO_(2)leaks to the ground surface or the bottom of the sea.In this study,pressure responses were simulated to present design factors such as well location and pressure transmitter of the observation well.Numerical simulations on the pressure response and the time-delay from pressure build-up after CO_(2)injection were conducted by considering aquifer parameters and distance from the CO_(2)injection well to an observation well.The measurement resolution of a pressure transmitter installed in the observation well was presented based on numerical simulation results of the pressure response against pressure build-up at the injection well and CO_(2)plume front propagations.Furthermore,the pressure response at an observation well was estimated by comparing the numerical simulation results with the curve of CO_(2)saturation and relative permeability.It was also suggested that the analytical solution can be used for the analysis of the pressure response tendency using pressure build-up and dimensionless parameters of hydraulic diffusivity.Thus,a criterion was established for selecting a pressure transducer installed at an observation well to monitor the pressure responses with sufficient accuracy and resolution,considering the distance from the injection well and the pressure build-up at the injection well,for future carbon capture and storage(CCS)projects.展开更多
基金Supported by the Science and Technology Research Project of China Petroleum&Chemical Corporation (No. P22175)。
文摘The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.
基金support from the China Scholarship Council ([2007]3020) is gratefully acknowledged
文摘Storage of CO2 in saline aquifers is a viable option for reducing the amount of CO2 released to the atmosphere. This paper provides an overall review of CO2 sequestration in saline aquifers. First, the principles of CO2 sequestration are presented, including CO2 phase behavior, CO2-water-rock interaction, and CO2 trapping mechanisms. Then storage capacity and CO2 injectivity are discussed as the main determinants of the storage potential of saline aquifers. Next, a site section process is addressed considering basin characteristics, reservoir characteristics, and economic and social concerns. Three main procedures are then presented to investigate the suitability of a site for CO2 sequestration, including site screening, detailed site characterization, and pilot field-scale test. The methods for these procedures are also presented, such as traditional site characterization methods, laboratory experiments, and numerical simulation. Finally, some operational aspects of sequestration are discussed, including well type, injection rate, CO2 purity, and injection strategy.
基金support from the National Basic Research Program of China (973 Project,2006CB705801)the Program for New Century Excellent Talents in University (2007)
文摘Carbon capture and storage (CCS) technology has been considered as an important method for reducing greenhouse gas emissions and for mitigating global climate change. Three primary options are being considered for large-scale storage of CO2 in subsurface formations: oil and gas reservoirs, deep saline aquifers, and coal beds. There are very many large saline aquifers around the world, which could make a big contribution to mitigating global warming. However, we have much less understanding of saline aquifers than oil and gas reservoirs. Several mechanisms are involved in the storage of CO2 in deep saline aquifers, but the ultimate goal of injection of CO2 into the aquifers containing salt water is to dissolve the CO2 in the water. So it is important to study the solubility trapping and sensitivity factors of CO2 in saline aquifers. This paper presents results of modeling CO2 storage in a saline aquifer using the commercial reservoir simulator ECLIPSE. The objective of this study was to better understand the CO2/brine phase behavior (PVT properties) and quantitatively estimate the most important CO2 storage mechanism in brine-solubility trapping. This would provide a tool by performing theoretical and numerical studies that help to understand the feasibility of CO2 geological storage. A 3-dimensional, 2-phase (water/gas) conceptional reservoir model used finite, homogenous and isothermal formations into which CO2 is injected at a constant rate. The effects of main parameters were studied, including the vertical to horizontal permeability ratio kv/kh, salinity, and residual phase saturations. The results show that the vertical to horizontal permeability ratio has a significant effect on CO2 storage. Moreover, more CO2 dissolves in the brine at lower kv/kh values.
基金Supported by the Intergovernmental International Scientific and Technological Innovation Project (2022YFE0115800)Sinopec CCUS Project (P21075)。
文摘According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, considering geological,engineering and economic factors. The four scales include basin scale, depression scale, play scale and trap scale, and the three levels include theoretical storage capacity, engineering storage capacity, and economic storage capacity. The theoretical storage capacity can be divided into four trapping mechanisms, i.e. structural & stratigraphic trapping, residual trapping, solubility trapping and mineral trapping, depending upon the geological parameters, reservoir conditions and fluid properties in the basin. The engineering storage capacity is affected by the injectivity, storage security pressure, well number, and injection time.The economic storage capacity mainly considers the carbon pricing yield, drilling investment, and operation cost, based on the break-even principle. Application of the method for saline aquifer in the Gaoyou sag of the Subei Basin reveals that the structural & stratigraphic trapping occupies the largest proportion of the theoretical storage capacity, followed by the solubility trapping and the residual trapping, and the mineral trapping takes the lowest proportion. The engineering storage capacity and the economic storage capacity are significantly lower than the theoretical storage capacity when considering the constrains of injectivity, security and economy, respectively accounting for 21.0% and 17.6% of the latter.
文摘针对全球变暖问题,众多国家在巴黎气候变化大会上签署的协定为后续碳排放和控制气温上升提供了新思路。碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)是处理过度排放CO_(2)的方法之一。作为CO_(2)封存方法之一,咸水层封存具有储层分布广、与碳排放源匹配性好、封存潜力大、环境影响小的特点。本文从咸水层封存中的构造、毛细管、溶解和矿化封存这4种主要机理出发,从盖层地质条件、储层物性参数、CO_(2)纯度、封存操作4种主控因素入手,结合全球应用咸水层进行CO_(2)封存的工程项目案例,通过分析和对比全球咸水层封存项目实施的地质构造背景、封存过程、封存潜力以及环境监测方法等,总结适宜CO_(2)封存的地点和合适的监测机制,以期为中国咸水层CO_(2)地质封存工作提供借鉴。
基金We acknowledge the funding support from the Research Fund for the special projects in key fields of Guangdong Universities(Grant No.2021ZDZX4074)the Japan Society for the Promotion of Science(Grant No.JP-20K21163)Scientific Research Fund of Hainan University(Approval No.KYQD(ZR)-22122).
文摘To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters during and after injecting CO_(2),because it can detect whether the injected CO_(2)leaks to the ground surface or the bottom of the sea.In this study,pressure responses were simulated to present design factors such as well location and pressure transmitter of the observation well.Numerical simulations on the pressure response and the time-delay from pressure build-up after CO_(2)injection were conducted by considering aquifer parameters and distance from the CO_(2)injection well to an observation well.The measurement resolution of a pressure transmitter installed in the observation well was presented based on numerical simulation results of the pressure response against pressure build-up at the injection well and CO_(2)plume front propagations.Furthermore,the pressure response at an observation well was estimated by comparing the numerical simulation results with the curve of CO_(2)saturation and relative permeability.It was also suggested that the analytical solution can be used for the analysis of the pressure response tendency using pressure build-up and dimensionless parameters of hydraulic diffusivity.Thus,a criterion was established for selecting a pressure transducer installed at an observation well to monitor the pressure responses with sufficient accuracy and resolution,considering the distance from the injection well and the pressure build-up at the injection well,for future carbon capture and storage(CCS)projects.