The Canny edge detector inevitably misses some important and obvious edges during contour extraction, which causes gaps in the contour. A geometric method to locate, measure and fill the gaps precisely is proposed. Wi...The Canny edge detector inevitably misses some important and obvious edges during contour extraction, which causes gaps in the contour. A geometric method to locate, measure and fill the gaps precisely is proposed. With the complete contour information, a convolution approach is presented, which utilizes an appropriate linear interpolation to resample the contour to calculate pointwise curvature. This approach distributes discrete points within a convolution window uniformly. It ensures a one-to-one correspondence between every point and its weight, thus the accuracy is guaranteed under this condition. A related parameter selection is also suggested. Experimental results show that the proposed methods are robust and accurate.展开更多
Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around...Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.展开更多
A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subj...A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subjected to critical analysis. These relative numerical indicators are replaced by two absolute indicators whose properties better describe surface textures of rock joints. The first absolute indicator results from the Fourier Matrix and evaluates wavy shapes of surfaces. The second absolute indicator quantifies the heights of surface reliefs, and is defined as the root mean square height of the surface outline. The behavior of the newly introduced numerical indicators are investigated by means of the deterministic periodic surface reliefs. The practical application of the new indicators is presented and the convenient performances of both the indicators are documented.展开更多
With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. ...With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.展开更多
This paper presents a new effcient algorithm for exactly computing the halfspace depth contours based on the idea of a circular sequence. Unlike the existing methods, the proposed algorithm segments the unit sphere di...This paper presents a new effcient algorithm for exactly computing the halfspace depth contours based on the idea of a circular sequence. Unlike the existing methods, the proposed algorithm segments the unit sphere directly relying on the permutations that correspond to the projections of observations onto some unit directions, without having to use the technique of parametric programming.Some data examples are also provided to illustrate the performance of the proposed algorithm.展开更多
The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi-...The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).展开更多
文摘The Canny edge detector inevitably misses some important and obvious edges during contour extraction, which causes gaps in the contour. A geometric method to locate, measure and fill the gaps precisely is proposed. With the complete contour information, a convolution approach is presented, which utilizes an appropriate linear interpolation to resample the contour to calculate pointwise curvature. This approach distributes discrete points within a convolution window uniformly. It ensures a one-to-one correspondence between every point and its weight, thus the accuracy is guaranteed under this condition. A related parameter selection is also suggested. Experimental results show that the proposed methods are robust and accurate.
文摘Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.
基金supported by the Grant Agency of the Czech Republic (No. 13-03403S)
文摘A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subjected to critical analysis. These relative numerical indicators are replaced by two absolute indicators whose properties better describe surface textures of rock joints. The first absolute indicator results from the Fourier Matrix and evaluates wavy shapes of surfaces. The second absolute indicator quantifies the heights of surface reliefs, and is defined as the root mean square height of the surface outline. The behavior of the newly introduced numerical indicators are investigated by means of the deterministic periodic surface reliefs. The practical application of the new indicators is presented and the convenient performances of both the indicators are documented.
文摘With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.
基金supported by the National Natural Science Foundation of China under Grant No.11461029the Natural Science Foundation of Jiangxi Province under Grant Nos.20142BAB211014+5 种基金20132BAB21101520122BAB20102320133BCB23014the Youth Science Fund Project of Jiangxi provincial education department under Grant Nos.GJJ14350GJJ14449KJLD13033
文摘This paper presents a new effcient algorithm for exactly computing the halfspace depth contours based on the idea of a circular sequence. Unlike the existing methods, the proposed algorithm segments the unit sphere directly relying on the permutations that correspond to the projections of observations onto some unit directions, without having to use the technique of parametric programming.Some data examples are also provided to illustrate the performance of the proposed algorithm.
基金supported by National Natural Science Foundation of China(51236001)National Basic Research Program of China(2012CB720201)Beijing Natural Science Foundation(No.3151002)
文摘The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).