期刊文献+

一种基于视觉注意机制的刀具检测方法 被引量:2

A Method Based on Visual Attention in Tool Detection
在线阅读 下载PDF
导出
摘要 为了解决视觉引导的机器人加工系统中对目标进行快速、准确检测的问题,将人类视觉选择性注意机制引入机器视觉系统,提出了一种基于轮廓的视觉选择性注意计算模型(SECO模型)。该模型通过分离目标、提取边缘、感知轮廓、轮廓显著度竞争、注意焦点选择及转移等策略,实现对目标的检测。实验结果表明,该模型能够实现在复杂场景下对目标进行快速准确的检测,且具有很强的抗干扰能力和较高的计算效率,便于在机器视觉系统中直接应用。 To solve the problem of target detection, which is appeared in the visual guide robot processing system, the human visual selective attention mechanism was introduced into the machine vision system. A computational model of visual selective attention based on the contour was proposed. It realized the testing goal by using a strategy of separating object, extracting edge, perceiving contour, competing in the saliency of contour, choosing and transferring attention focus. Experimental results indicate that the model can be attained to the accuracy of target detection in complex scenes, possesses a strong anti--jamming capability and high computing efficiency, which has a potential of using in the machine vision system directly.
作者 窦燕 孔令富
机构地区 燕山大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第17期2024-2027,共4页 China Mechanical Engineering
基金 国家863高技术研究发展计划资助项目(2006AA04Z212)
关键词 机器视觉系统 轮廓检测 视觉选择性注意 基于轮廓的视觉注意计算模型(SECO模型) machine vision system contour detection visual selective attention segmentation edge contour object(SECO) model
  • 相关文献

参考文献12

  • 1Itti L, Koch C. Computational Modeling of Visual Attention [J]. Nature Reviews Neuroscience. 2001, 2 (3) : 191-203.
  • 2Aziz M Z, Mertsching B, Shafik M S, et al. Evaluation of Visual Attention Models for Robots[C]//Proceedings of the Fourth IEEE International Conference on Computer Vision Systems. Manhattan, USA, 2006: 20-25.
  • 3张鹏,王润生.由底向上视觉注意中的层次性数据竞争[J].计算机辅助设计与图形学学报,2005,17(8):1667-1672. 被引量:5
  • 4Walther D, Rutishauser U, Koch C, et al. Selective Visual Attention Enables Learning and Recognition of Multiple Objects in Cluttered Scenes[J]. Computer Vision and Image Understanding, 2005,100( 1/2) : 41-63.
  • 5Rothenstein A L. Tsotsos J K. Attention Links Sensing to Recognition[J]. Image and Vision Computing,2008,26(1):114-126.
  • 6杨旭静,钟志华,陈泽忠.自由曲线轮廓加工的圆弧样条刀具路径研究[J].中国机械工程,2006,17(12):1277-1282. 被引量:7
  • 7Sun Y, Fisher R. Object--based Visual Attention for Computer Vision[J]. Artificial Intelligence, 2003, 146 (1) :77-123.
  • 8Orabona F, Metta G, Sandini G. Object-based Visual Attention:a Model for a Behaving Robot[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA,2005(3) :89.
  • 9Ban S W, Lee M. Selective Attention-based Novelty Scene Detection in Dynamic Environments[J]. Neurocomputing, 2006, 69(13/15): 1723-1727.
  • 10Serenees J T, Yantis S. Selective Visual Attention and Perceptual Coherence [J]. Trends in Cognitive Sciences, 2006,10(1): 38-45.

二级参考文献29

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:360
  • 2李立源,东南大学学报,1996年,26卷,2期,1页
  • 3Chen W T,Pattern Recognition,1994年,27卷,885页
  • 4傅京孙,机器人学
  • 5王甦 汪安圣.认知心理学[M].北京:北京大学出版社,1992..
  • 6Bourque E, Dudek G, Ciaravola P. Robotic sightseeing: A method for automatically creating virtual environments [A]. In:Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, 1998. 3186~3191.
  • 7Kadir T, Brady M. Saliency, scale and image description [J].International Journal of Computer Vision, 2001, 45(2): 83~105.
  • 8Gesu V Di, Valenti C, Strinati L. Local operators to detect regions of interest [J]. Pattern Recognition Letters, 1997, 18(11): 177~181.
  • 9Wai W Y K, Tsotsos J K. Directing attention to onset and offset of image events for eye-head movement control [A]. In:Proceedings of the International Association for Pattern Recognition, Washington D C, 1994, A: 274~279.
  • 10Stentiford F W M. An evolutionary programming approach to the simulation of visual attention [A]. In: Proceedings of the Congress on Evolutionary Computation, Seoul, 2001. 27~30.

共引文献58

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部