期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于组合半监督的增量支持向量机学习算法 被引量:7
1
作者 郭虎升 王文剑 潘世超 《模式识别与人工智能》 EI CSCD 北大核心 2016年第6期504-510,共7页
增量支持向量机(ISVM)由于在每次增量学习过程中无法选择最有效的增量样本,导致模型的泛化性能较差.针对此问题,文中提出基于组合半监督方式的增量支持向量机学习算法(ICS3VM).通过将大量的无标记样本分批进行组合标记以选择最优的增量... 增量支持向量机(ISVM)由于在每次增量学习过程中无法选择最有效的增量样本,导致模型的泛化性能较差.针对此问题,文中提出基于组合半监督方式的增量支持向量机学习算法(ICS3VM).通过将大量的无标记样本分批进行组合标记以选择最优的增量样本,即每次选择位于分类间隔内部的最有价值样本加入训练集,以此修正模型.同时选择分类间隔最大的一组标记作为最终标记,确保标记的准确性.在标准数据集上的实验表明,ICS3VM能以较高的学习效率提高模型的泛化性能. 展开更多
关键词 支持向量 组合半监督学习 增量支持向量机(ISVM)
在线阅读 下载PDF
基于样本关联度权重的增量支持向量机算法 被引量:5
2
作者 张烨 《电子科技》 2017年第3期41-44,48,共5页
当处理数据规模较大、属性较多、且存在噪声数据干扰的医疗数据时,传统的支持向量机会出现训练速度变慢、参数敏感且难以保证其准确率等问题。为解决此问题,文中提出了一种基于样本关联度权重的增量支持向量机算法。通过引入关联度对样... 当处理数据规模较大、属性较多、且存在噪声数据干扰的医疗数据时,传统的支持向量机会出现训练速度变慢、参数敏感且难以保证其准确率等问题。为解决此问题,文中提出了一种基于样本关联度权重的增量支持向量机算法。通过引入关联度对样本进行加权处理,同时利用KKT条件对训练样本进行筛选,不仅节省了大量的内存存储空间,且减少了训练时间,进一步提高了分类学习的准确度。 展开更多
关键词 支持向量 样本加权 增量支持向量机 KKT条件
在线阅读 下载PDF
基于协同增量支持向量机的网络入侵检测 被引量:2
3
作者 张燕 《河南科学》 2018年第1期11-16,共6页
针对网络行为数据的不均衡、数量大、更新快的问题,结合均衡化、增量学习、分类器集成思想提出一种用于网络入侵检测的协同增量支持向量机算法,该算法利用多个分类器的协同工作,提高算法速度,每个子分类器依据类样本的空间分布计算类样... 针对网络行为数据的不均衡、数量大、更新快的问题,结合均衡化、增量学习、分类器集成思想提出一种用于网络入侵检测的协同增量支持向量机算法,该算法利用多个分类器的协同工作,提高算法速度,每个子分类器依据类样本的空间分布计算类样本错分代价,避免分类超平面偏移,对多个子分类器进行加权集成获得最终分类器,提高最终分类器在不均衡数据集下的分类性能.最后,在KDDCUP1999数据集上的仿真实验结果表明,该算法对整体准确率、少数类及未知攻击都有较高的检测准确率. 展开更多
关键词 增量支持向量机 不均衡数据集 分类器集成 KKT条件
在线阅读 下载PDF
基于增量One-Class支持向量机的注册表异常检测 被引量:1
4
作者 刘志才 彭宏 《西华大学学报(自然科学版)》 CAS 2007年第2期8-10,14,共4页
提出一种基于增量支持向量机的异常检测方法,利用Windows注册表建立了入侵检测模型,通过SVM算法实时判断当前对注册表的访问行为是否为异常状态来发现和识别入侵行为。实验表明:该方法对未知病毒和未知入侵行为具有较高检测率,可以提高... 提出一种基于增量支持向量机的异常检测方法,利用Windows注册表建立了入侵检测模型,通过SVM算法实时判断当前对注册表的访问行为是否为异常状态来发现和识别入侵行为。实验表明:该方法对未知病毒和未知入侵行为具有较高检测率,可以提高在先验知识较少情况下的学习机推广能力。同时,考虑到注册表键值数量巨大,采用增量SVM算法可以在不影响检测性能的同时减少训练时间。 展开更多
关键词 增量支持向量机 注册表 入侵检测 病毒检测
在线阅读 下载PDF
增量式最小二乘法分类器与增量式支持向量机的对比 被引量:3
5
作者 朱真峰 郭跃飞 薛向阳 《小型微型计算机系统》 CSCD 北大核心 2011年第3期493-498,共6页
在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘... 在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘法的增量式方法.该增量式方法通过对矩阵运算的恒等推导,把矩阵求逆问题转变成了除法运算,得到了简单的模型参数更新公式,从而获得了和ISVM同样的预测精度,且在处理高维数据时运行效率更高.在合成数据及图像和生物数据上的试验表明该增量式方法优于ISVM方法. 展开更多
关键词 监督学习 增量式学习 增量式近似支持向量 高维 增量式最小二乘法
在线阅读 下载PDF
基于支持向量机增量学习和LPBoost的人体目标再识别算法 被引量:3
6
作者 许允喜 蒋云良 陈方 《光子学报》 EI CAS CSCD 北大核心 2011年第5期758-763,共6页
摄像机间目标关联是无重叠视域多摄像机目标持续跟踪的关键.提出了一种只利用人体目标外观,完全不依赖于空时关系的人体目标再识别算法,利用识别结果直接进行跨摄像机间人体目标关联,而不依赖于目标的捕获时间和路径限制.对跟踪视频前... 摄像机间目标关联是无重叠视域多摄像机目标持续跟踪的关键.提出了一种只利用人体目标外观,完全不依赖于空时关系的人体目标再识别算法,利用识别结果直接进行跨摄像机间人体目标关联,而不依赖于目标的捕获时间和路径限制.对跟踪视频前景图像序列提取互补性视觉单词树直方图和全局颜色直方图二种特征,采用支持向量机增量学习在线训练二种特征的人体外观辨别模型,再利用多类线性规划增强算法对二种特征的支持向量机模型进行在线自适应融合.实验结果表明,本文算法具有较强的在线学习能力,能增量式表达人体目标辨别性外观模型,特征融合后的模型区别性更强,有效地降低多方面条件变化的影响,获得了高识别率,且能够实现快速实时实现,相对于现有方法有了明显提升. 展开更多
关键词 视频监控 支持向量增量学习 局部描述子 人目标再识别 单词树 线性规划增强
在线阅读 下载PDF
基于最小样本平面距离的支持向量机增量学习算法 被引量:3
7
作者 朱发 业宁 +1 位作者 潘冬寅 丁文 《计算机工程与设计》 CSCD 北大核心 2012年第1期346-350,共5页
支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练。Liva Ralaivola[1]提出保留新增样本最近邻样本来表示历史样本集,... 支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练。Liva Ralaivola[1]提出保留新增样本最近邻样本来表示历史样本集,而这样的最近邻样本中可能存在冗余样本。根据历史样本与分类平面间的距离可以去除新增样本最近邻样本集中的冗余样本。根据样本平面距离提出了MSPDISVM(minimum sample plane distance incremental support vector ma-chines)算法。实验结果表明,MSPDISVM比Liva Ralaivola提出的算法有更快的速度,而精度没有太大的差异。使用样本平面距离可以有效地去除新增样本最近邻中的冗余样本。 展开更多
关键词 支持向量 增量学习 样本距离 样本平面距离 最小样本平面距离支持向量增量学习算法
在线阅读 下载PDF
用于手写数字识别的增量式模糊支持向量机 被引量:1
8
作者 刘宏兵 柳春华 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2014年第3期421-424,共4页
根据不同训练样本对于训练过程具有不同的贡献度,构造增量函数.通过设置增量函数的阈值,构造了用于手写数字识别的增量式模糊支持向量机.选取机器学习与智能系统中心的手写数字识别问题来验证文中方法的优越性,与模糊支持向量机相比,文... 根据不同训练样本对于训练过程具有不同的贡献度,构造增量函数.通过设置增量函数的阈值,构造了用于手写数字识别的增量式模糊支持向量机.选取机器学习与智能系统中心的手写数字识别问题来验证文中方法的优越性,与模糊支持向量机相比,文中方法加快了训练过程,提高了识别精度. 展开更多
关键词 手写数字 模糊支持向量 增量函数 增量式模糊支持向量
在线阅读 下载PDF
基于增量自适应支持向量机的AFM尖端磨损识别 被引量:3
9
作者 江子湛 程菲 张海民 《计算机集成制造系统》 EI CSCD 北大核心 2023年第4期1127-1136,共10页
为了提高纳米加工刀具磨损状态在线监测的精度与泛化能力,提出一种基于增量自适应支持向量机的基于原子力显微镜(AFM)尖端磨损识别方法。该方法以横向力的峰-峰值和方差作为特征变量,通过移动视窗获取增量数据;以维持Kuhn-Tucher定理所... 为了提高纳米加工刀具磨损状态在线监测的精度与泛化能力,提出一种基于增量自适应支持向量机的基于原子力显微镜(AFM)尖端磨损识别方法。该方法以横向力的峰-峰值和方差作为特征变量,通过移动视窗获取增量数据;以维持Kuhn-Tucher定理所要求的最优化条件为准则,在当前支持向量机解结构基础上自适应修改正则化参数C和核参数σ,以获得更新支持向量机结构,并对增量数据及受其扰动的原数据进行分类;根据尖端失效点数量走势,判定尖端磨损程度。实验证明该算法在识别精度与时间上可满足在线检测要求。与定向非循环图支持向量分类器对比,该算法具有更强的鲁棒性与更高的泛化能力。 展开更多
关键词 纳米加工 尖端磨损在线识别 横向力特征 增量自适应支持向量 统计模式损伤检测
在线阅读 下载PDF
基于支持向量机的鲁棒故障诊断方法研究 被引量:1
10
作者 宗群 刘文静 窦立谦 《弹箭与制导学报》 CSCD 北大核心 2007年第3期307-310,共4页
针对生产过程中因扰动、噪声等因素引起误报率高的问题,文中提出基于支持向量机(SVM)的鲁棒故障检测方法。采用SVM对建模不确定性部分进行辨识,且将结果作为补偿项加到观测器中,使残差在理想情况下只表现为故障的形式,消除了干扰、噪声... 针对生产过程中因扰动、噪声等因素引起误报率高的问题,文中提出基于支持向量机(SVM)的鲁棒故障检测方法。采用SVM对建模不确定性部分进行辨识,且将结果作为补偿项加到观测器中,使残差在理想情况下只表现为故障的形式,消除了干扰、噪声等对残差的影响。而在故障辨识中,文中对基于积极集法的回归型增量支持向量机(RISVM)进行研究,不断考虑新数据对辨识模型的影响,实现故障的在线辨识。最后通过仿真算例验证所提方法的有效性。 展开更多
关键词 增量支持向量机 鲁棒故障检测 故障辨识 积极集
在线阅读 下载PDF
基于增量支持向量回归机的股价预测模型研究
11
作者 黄青华 何凯瑜 孙洁 《上海市经济管理干部学院学报》 2012年第1期8-14,共7页
随着越来越多的人加入到股票投资中,有效的股票预测方法就显得尤为重要。本文利用增量支持向量回归机对上证指数的收盘价进行预测,并同神经网络方法进行比较分析、实证研究,可发现,基于增量支持向量回归机的股价预测模型表现较佳,为股... 随着越来越多的人加入到股票投资中,有效的股票预测方法就显得尤为重要。本文利用增量支持向量回归机对上证指数的收盘价进行预测,并同神经网络方法进行比较分析、实证研究,可发现,基于增量支持向量回归机的股价预测模型表现较佳,为股价预测模型研究提供了一种新的方法,进而为投资者提供了一定的参考信息。 展开更多
关键词 上证指数 增量支持向量回归 神经网络
在线阅读 下载PDF
一种基于中心型支持向量机的多类别分类算法 被引量:1
12
作者 韦忠升 马寿峰 《计算机工程与应用》 CSCD 北大核心 2006年第27期158-161,共4页
文章主要探讨了支持向量机在数据挖掘中的应用问题。在对中心型支持向量机的研究改进过程中,结合增量型支持向量机算法,将问题域扩展到多类别分类问题领域,从而设计了一个基于支持向量机技术处理样本均衡型和增量型的分类算法(theMBI-S... 文章主要探讨了支持向量机在数据挖掘中的应用问题。在对中心型支持向量机的研究改进过程中,结合增量型支持向量机算法,将问题域扩展到多类别分类问题领域,从而设计了一个基于支持向量机技术处理样本均衡型和增量型的分类算法(theMBI-SVM)。在UCI数据库上进行了实验,结果证实该算法具有较高的稳定性、可行性和实用性。 展开更多
关键词 支持向量 中心型支持向量 多类别分类 增量支持向量
在线阅读 下载PDF
基于增量学习向量SVM方法的图像分割应用 被引量:5
13
作者 陈沅涛 徐蔚鸿 +1 位作者 吴佳英 胡蓉 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第1期6-11,共6页
为了解决经典支持向量机方法已发现的执行时间长、执行效率低的相关问题,提出基于增量学习向量的支持向量机学习方法。该算法通过对训练样本集合的相关增量学习向量进行训练学习来得到初始支持向量机分类器。利用该初始化分类器在有关... 为了解决经典支持向量机方法已发现的执行时间长、执行效率低的相关问题,提出基于增量学习向量的支持向量机学习方法。该算法通过对训练样本集合的相关增量学习向量进行训练学习来得到初始支持向量机分类器。利用该初始化分类器在有关条件下针对初始训练样本集进行缩减得到精简缩小集,再应用精简缩小集针对初始支持向量机的分类器反向加工来得到支持向量机的最终分类器。该算法可大幅度降低大容量数据集上支持向量机的学习时间,并且具有很好的泛化能力。为了验证本学习方法的可应用性,从Berkeley图像分割数据集BSDS500和互联网上选取相关彩色图像进行仿真实验。该文实验结果表明:该方法得到分割结果的过程不仅比传统支持向量机耗时少,且与Berkeley图像分割数据集中人工标注结果比较得到较好分割效果。 展开更多
关键词 支持向量 增量学习向量支持向量 图像分割 精简缩小集
在线阅读 下载PDF
一种基于快速增量SVM的入侵检测方法 被引量:7
14
作者 牟琦 陈艺坤 +1 位作者 毕孝儒 厍向阳 《计算机工程》 CAS CSCD 2012年第12期92-94,共3页
针对基于支持向量机(SVM)的入侵检测方法检测率低、检测速度慢的问题,提出一种基于快速增量SVM的入侵检测方法B-ISVM。该方法在确定邻界区后筛选其中的样本进行训练,完成分类超平面的初步构造,利用筛选因子提取支持向量,再进行基于KKT... 针对基于支持向量机(SVM)的入侵检测方法检测率低、检测速度慢的问题,提出一种基于快速增量SVM的入侵检测方法B-ISVM。该方法在确定邻界区后筛选其中的样本进行训练,完成分类超平面的初步构造,利用筛选因子提取支持向量,再进行基于KKT条件的增量学习,实现增量SVM分类器的构造。实验结果表明,该方法可以提高入侵检测率和检测速度,拥有更好的分类性能。 展开更多
关键词 入侵检测 增量支持向量机 K-均值算法 邻界区 样本分散度
在线阅读 下载PDF
基于KKT和超球结构的增量SVM算法的云架构入侵检测系统 被引量:7
15
作者 张文兴 樊捷杰 《计算机应用》 CSCD 北大核心 2015年第10期2886-2890,共5页
针对传统入侵检测系统(IDS)处理数据负载过重,不支持多主机数据联合分析,以及大规则库维护的问题,提出一种云架构的基于卡罗需-库恩-塔克(KKT)条件和超球结构的增量支持向量机(KS-ISVM)入侵检测系统。将客户端抓取的数据包经过预处理生... 针对传统入侵检测系统(IDS)处理数据负载过重,不支持多主机数据联合分析,以及大规则库维护的问题,提出一种云架构的基于卡罗需-库恩-塔克(KKT)条件和超球结构的增量支持向量机(KS-ISVM)入侵检测系统。将客户端抓取的数据包经过预处理生成样本空间,然后发送至云端使用KS-ISVM进行建模分析,利用KKT条件对增量样本进行筛选,选取违反KKT条件的样本作为有用样本,剔除KKT范围内的所有样本;此外,为了保证剔除的样本为冗余样本,进一步采用超球结构的方法对样本进行第二次筛选,将超球范围内的样本作为有用样本,剔除其余样本;最后将选取的样本进行合并,对SVM进行更新训练。利用KDDCUP99数据进行实验验证,并与SVM、批量支持向量机(Batch-SVM)、互检KKT条件的增量学习(K-ISVM)算法进行对比,结果表明,KS-ISVM具有良好的预测能力和样本淘汰能力,准确率达到90.3%,而SVM、Batch-SVM和K-ISVM三种方法准确率均在89%以下;同时还对并行KSISVM进程联合分析,发现单进程的分析时间由6 351 s降低到16进程的146 s,分析时间大大降低,说明了多进程的有效性,满足云计算环境中的入侵检测系统对效率和精度的要求。 展开更多
关键词 入侵检测系统 云架构 增量支持向量机 卡罗需-库恩-塔克条件 超球结构
在线阅读 下载PDF
基于中心凸包算法与增量学习的SVM算法研究 被引量:1
16
作者 白东颖 王刚 张泚 《火力与指挥控制》 CSCD 北大核心 2015年第3期20-23,共4页
基于计算几何理论,在分析支持向量与凸包向量关系的基础上,提出了一种基于中心凸包算法与增量学习的SVM学习算法。在确保分类器达到可靠精度的前提下,为解决学习中时耗过长的问题,在对当前训练集计算凸包的基础上采用欧式中心距离淘汰... 基于计算几何理论,在分析支持向量与凸包向量关系的基础上,提出了一种基于中心凸包算法与增量学习的SVM学习算法。在确保分类器达到可靠精度的前提下,为解决学习中时耗过长的问题,在对当前训练集计算凸包的基础上采用欧式中心距离淘汰法对训练样本进一步精简,并且每次进行增量学习的样本都包含前次训练样本集中违背KKT条件的样本,在UCI数据库上进行算法对比实验,结果表明算法的可行性和有效性。 展开更多
关键词 凸包 增量支持向量机 中心距离 KKT
在线阅读 下载PDF
改进的增量式SVM在网络入侵检测中的应用 被引量:4
17
作者 廖建平 余文利 方建文 《计算机工程与应用》 CSCD 2013年第10期100-104,169,共6页
针对传统的增量式支持向量机(Incremental Support Vector Machine,ISVM)在处理数据集时易受数据噪声和学习过程中振荡问题影响的缺点,将改进的核函数U-RBF和构造备用集的同心圆方法相结合,提出了基于备用集的增量式支持向量机(Reser... 针对传统的增量式支持向量机(Incremental Support Vector Machine,ISVM)在处理数据集时易受数据噪声和学习过程中振荡问题影响的缺点,将改进的核函数U-RBF和构造备用集的同心圆方法相结合,提出了基于备用集的增量式支持向量机(Reserved Set-Incremental Support Vector Machine,RS-ISVM)方法。该方法首先将特征属性的均值和均方差值嵌入到核函数RBF中,并通过同心圆方法将后续学习过程中最有可能成为支持向量的样本划入备用集。入侵检测实验证明RS-ISVM能够降低学习过程的振荡现象,提高了学习的速度,有非常好的性能和可靠性。 展开更多
关键词 网络入侵检测 增量支持向量 备用集 改进的核函数
在线阅读 下载PDF
脑机接口中基于BISVM的EEG分类 被引量:1
18
作者 杨帮华 何美燕 +1 位作者 刘丽 陆文宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第8期1431-1436,共6页
针对脑电信号(EEG)分类问题,提出基于批处理增量式支持向量机(BISVM)的分类方法.将所有数据通过批处理进行分组,采用第1组数据在SVM中建立初始分类器模型,将剩余组内数据顺序作为新增样本,对满足卡罗需-库恩-塔克(KKT)条件的样本进行增... 针对脑电信号(EEG)分类问题,提出基于批处理增量式支持向量机(BISVM)的分类方法.将所有数据通过批处理进行分组,采用第1组数据在SVM中建立初始分类器模型,将剩余组内数据顺序作为新增样本,对满足卡罗需-库恩-塔克(KKT)条件的样本进行增量学习和减量去学习,不断判断KKT条件并更新参数,丢弃错误样本,对初始分类器模型进行更新.对2008年脑机接口竞赛数据及本实验室采集数据,用小波包分解(WPD)结合共空间模式(CSP)进行特征提取,SVM、ISVM及BISVM分类.结果表明,BISVM的平均分类准确率相对SVM及ISVM分别提高了3.3%及0.3%,BISVM平均训练时间相对ISVM从1.076s减少到0.793s.BISVM为改善计算机对大脑的适应性,实现快速实时在线的脑机接口系统奠定基础. 展开更多
关键词 接口 批处理增量支持向量 脑电 分类
在线阅读 下载PDF
脑机接口中一种多类运动想象任务识别新方法
19
作者 韩志军 杨帮华 +1 位作者 何美燕 刘丽 《北京生物医学工程》 2015年第3期256-260,共5页
目的针对脑机接口中三类运动想象任务,提出一种最小二乘法自适应滤波结合独立成分分析以及样本熵(RLS-ICA-Samp En)、多类共同空间模式(CSP)、增量式支持向量机(ISVM)相结合的脑电识别新方法,以解决脑机接口中多类运动想象正确率低的问... 目的针对脑机接口中三类运动想象任务,提出一种最小二乘法自适应滤波结合独立成分分析以及样本熵(RLS-ICA-Samp En)、多类共同空间模式(CSP)、增量式支持向量机(ISVM)相结合的脑电识别新方法,以解决脑机接口中多类运动想象正确率低的问题。方法首先采用ICA将EEG分离,然后利用样本熵自动识别分离后的噪声,再采用RLS对识别出来的噪声进行滤波,最后进行信号重构,得到去除噪声的脑电信号。多类CSP采用"一对一"CSP与多频段滤波相结合,对去噪后的脑电信号进行特征提取。通过"一对多"方式的ISVM对三类运动想象脑电信号获取的特征向量进行分类。为检验新方法的有效性,将本文方法与多类CSP+ISVM(方法 1)及RLS-ICA+多类CSP+ISVM(方法 2)进行比较。结果对三类想象任务而言,本文方法识别正确率与方法 1和2相比均高8%左右。结论与方法1和2比较,RLS-ICA-Samp En、多类CSP、ISVM相结合的脑电识别新方法能更好地适用于多类运动想象任务识别。 展开更多
关键词 接口 RLS自适应滤波器 独立分量分析 共同空间模式 增量支持向量 样本熵
在线阅读 下载PDF
SVM增量学习算法研究
20
作者 王延峰 《黑龙江科技信息》 2012年第9期25-25,共1页
支持向量机(support vector machine)是一种建立在结构风险最小化原则基础上的全新机器学习方法,具有很强的学习能力和泛化性能,能够较好地解决小样本、高维数、非线性、局部极小等实际问题。虽然支持向量机较其它学习方法在很多方面都... 支持向量机(support vector machine)是一种建立在结构风险最小化原则基础上的全新机器学习方法,具有很强的学习能力和泛化性能,能够较好地解决小样本、高维数、非线性、局部极小等实际问题。虽然支持向量机较其它学习方法在很多方面都具有难以比拟的优越性,但是作为一种新型的技术,支持向量机目前仍然具有一些局限性,尤其是它在支持增量式学习方面还不够好,所以对向量机进行增量学习有着一定的必要性。一方面,由于使用者在训练初期对问题理解的局限性以及问题的高度复杂性,一般很难精确地定义所要的完整的训练集;另一方面,要在初期就收集一个非常完整的训练集是非常困难甚至是难以实现的。本文基于以上的思想对支持向量机增量学习进行研究,通过对原有算法的研究找到一个新的支持向量机增量学习算法。 展开更多
关键词 SVM 支持向量 支持向量增量 增量学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部