期刊文献+

一种基于快速增量SVM的入侵检测方法 被引量:7

Intrusion Detection Method Based on Fast Incremental SVM
在线阅读 下载PDF
导出
摘要 针对基于支持向量机(SVM)的入侵检测方法检测率低、检测速度慢的问题,提出一种基于快速增量SVM的入侵检测方法B-ISVM。该方法在确定邻界区后筛选其中的样本进行训练,完成分类超平面的初步构造,利用筛选因子提取支持向量,再进行基于KKT条件的增量学习,实现增量SVM分类器的构造。实验结果表明,该方法可以提高入侵检测率和检测速度,拥有更好的分类性能。 Aiming at the low rate of intrusion detection and the slow detection speed of intrusion detection method based on Support Vector Machine(SVM),this paper proposes a new method named Boundary-Incremental Support Vector Machine(B-ISVM).The boundary areas are identified and samples are screened for training to construct the initial classification hyperplane.The support vector is extracted according to screening factor.And the construction of the incremental SVM classifier is completed through incremental learning based on KKT conditions.Experimental results show that the method can achieve higher rate of intrusion detection and faster detection speed,and it has better classification performance.
出处 《计算机工程》 CAS CSCD 2012年第12期92-94,共3页 Computer Engineering
基金 陕西省自然科学基金资助项目(2009JM7007)
关键词 入侵检测 增量支持向量机 K-均值算法 邻界区 样本分散度 intrusion detection Incremental Support Vector Machine(ISVM) K-means algorithm boundary area sample dispersion
  • 相关文献

参考文献8

二级参考文献22

  • 1沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 2史朝辉,王晓丹,杨建勋.一种SVM增量训练淘汰算法[J].计算机工程与应用,2005,41(23):187-189. 被引量:11
  • 3奉国和,李拥军,朱思铭.边界邻近支持向量机[J].计算机应用研究,2006,23(4):11-12. 被引量:7
  • 4李祥纳,艾青,秦玉平,刘卫江.支持向量机增量学习算法综述[J].渤海大学学报(自然科学版),2007,28(2):187-189. 被引量:12
  • 5Syed N A,Liu H,Sung K K.Incremental learning with support vector machines [C]. Proc Int Joint Conf on Artificial Intelligence,1999.
  • 6Jinbo Bi,Kristin Bennett.A geometric approach to support vector regression[J].Neurocomputing,2003,55:79-108.
  • 7Pavel Laskov.Incrernental support vector learning, Analysis, implementation and applications[J].Journal of Machine Learning Research,2006(7): 1909-1936.
  • 8Lee Y J,Mangasarian O LRSVM:Reduced support vector machine[C]// First SIAM International Conference on Data Mining,Chicago, 2001:350-366.
  • 9Wang J H,Lee W J,Lee S J.A kernel-based fuzzy clustering algorithm [C]//Proceedings of the First International Conference on Innovative Computing,Information and Control.Beijing:IEEE CS Press, 2006, 1:550-553.
  • 10Justin D.Intrusion Detection:the Application of Feature Selection――a Comparison of Algorithms,and the Application of a Wide Area Network Analyzer[D].Davis:Department of Computer Science,University of California,1992.

共引文献16

同被引文献55

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部