“分部积分”是积分学中的重要内容之一,它是用来解决两个函数乘积的积分的方法。目前在国内现行的大部分教材中关于“分部积分”这部分内容的讲授都是从两个函数乘积的导数(或微分)公式中引入,然后利用微分与积分互为逆运算的性质,得...“分部积分”是积分学中的重要内容之一,它是用来解决两个函数乘积的积分的方法。目前在国内现行的大部分教材中关于“分部积分”这部分内容的讲授都是从两个函数乘积的导数(或微分)公式中引入,然后利用微分与积分互为逆运算的性质,得到分部积分的计算公式: integral from (u(x)v′(x)dx )=u(x)·v(x)-integral from (v(x)u′(x)dx ) (1) 当计算积分integral from (u(x)v′(x)dx )感到困难,而计算积分integral from (v(x)u′(x)dx )又比较容易时,展开更多
In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘“分部积分”是积分学中的重要内容之一,它是用来解决两个函数乘积的积分的方法。目前在国内现行的大部分教材中关于“分部积分”这部分内容的讲授都是从两个函数乘积的导数(或微分)公式中引入,然后利用微分与积分互为逆运算的性质,得到分部积分的计算公式: integral from (u(x)v′(x)dx )=u(x)·v(x)-integral from (v(x)u′(x)dx ) (1) 当计算积分integral from (u(x)v′(x)dx )感到困难,而计算积分integral from (v(x)u′(x)dx )又比较容易时,
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.