A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can ...A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.展开更多
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi...In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr...Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.展开更多
Pointer instruments are widely used in the nuclear power industry. Addressing the issues of low accuracy and slow detection speed in recognizing pointer meter readings under varying types and distances, this paper pro...Pointer instruments are widely used in the nuclear power industry. Addressing the issues of low accuracy and slow detection speed in recognizing pointer meter readings under varying types and distances, this paper proposes a recognition method based on YOLOv8 and DeepLabv3+. To improve the image input quality of the DeepLabv3+ model, the YOLOv8 detector is used to quickly locate the instrument region and crop it as the input image for recognition. To enhance the accuracy and speed of pointer recognition, the backbone network of DeepLabv3+ was replaced with Mo-bileNetv3, and the ECA+ module was designed to replace its SE module, reducing model parameters while improving recognition precision. The decoder’s fourfold-up sampling was replaced with two twofold-up samplings, and shallow feature maps were fused with encoder features of the corresponding size. The CBAM module was introduced to improve the segmentation accuracy of the pointer. Experiments were conducted using a self-made dataset of pointer-style instruments from nuclear power plants. Results showed that this method achieved a recognition accuracy of 94.5% at a precision level of 2.5, with an average error of 1.522% and an average total processing time of 0.56 seconds, demonstrating strong performance.展开更多
Background Enterotoxigenic Escherichia coli(E.coli)is a threat to humans and animals that causes intestinal dis-orders.Antimicrobial resistance has urged alternatives,including Lactobacillus postbiotics,to mitigate th...Background Enterotoxigenic Escherichia coli(E.coli)is a threat to humans and animals that causes intestinal dis-orders.Antimicrobial resistance has urged alternatives,including Lactobacillus postbiotics,to mitigate the effects of enterotoxigenic E.coli.Methods Forty-eight newly weaned pigs were allotted to NC:no challenge/no supplement;PC:F18^(+)E.coli chal-lenge/no supplement;ATB:F18^(+)E.coli challenge/bacitracin;and LPB:F18^(+)E.coli challenge/postbiotics and fed diets for 28 d.On d 7,pigs were orally inoculated withF18^(+)E.coli.At d 28,the mucosa-associated microbiota,immune and oxidative stress status,intestinal morphology,the gene expression of pattern recognition receptors(PRR),and intestinal barrier function were measured.Data were analyzed using the MIXED procedure in SAS 9.4.Results PC increased(P<0.05)Helicobacter mastomyrinus whereas reduced(P<0.05)Prevotella copri and P.ster-corea compared to NC.The LPB increased(P<0.05)P.stercorea and Dialister succinatiphilus compared with PC.The ATB increased(P<0.05)Propionibacterium acnes,Corynebacterium glutamicum,and Sphingomonas pseudosanguinis compared to PC.The PC tended to reduce(P=0.054)PGLYRP4 and increased(P<0.05)TLR4,CD14,MDA,and crypt cell proliferation compared with NC.The ATB reduced(P<0.05)NOD1 compared with PC.The LPB increased(P<0.05)PGLYRP4,and interferon-γand reduced(P<0.05)NOD1 compared with PC.The ATB and LPB reduced(P<0.05)TNF-αand MDA compared with PC.Conclusions TheF18^(+)E.coli challenge compromised intestinal health.Bacitracin increased beneficial bacteria show-ing a trend towards increasing the intestinal barrier function,possibly by reducing the expression of PRR genes.Lac-tobacillus postbiotics enhanced the immunocompetence of nursery pigs by increasing the expression of interferon-γand PGLYRP4,and by reducing TLR4,NOD1,and CD14.展开更多
Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existin...Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework.展开更多
Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situ...Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.展开更多
Bird vocalizations are pivotal for ecological monitoring,providing insights into biodiversity and ecosystem health.Traditional recognition methods often neglect phase information,resulting in incomplete feature repres...Bird vocalizations are pivotal for ecological monitoring,providing insights into biodiversity and ecosystem health.Traditional recognition methods often neglect phase information,resulting in incomplete feature representation.In this paper,we introduce a novel approach to bird vocalization recognition(BVR)that integrates both amplitude and phase information,leading to enhanced species identification.We propose MHARes Net,a deep learning(DL)model that employs residual blocks and a multi-head attention mechanism to capture salient features from logarithmic power(POW),Instantaneous Frequency(IF),and Group Delay(GD)extracted from bird vocalizations.Experiments on three bird vocalization datasets demonstrate our method's superior performance,achieving accuracy rates of 94%,98.9%,and 87.1%respectively.These results indicate that our approach provides a more effective representation of bird vocalizations,outperforming existing methods.This integration of phase information in BVR is innovative and significantly advances the field of automatic bird monitoring technology,offering valuable tools for ecological research and conservation efforts.展开更多
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac...Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.展开更多
Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the in...Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method.展开更多
In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal ...In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.展开更多
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
Satellite communication systems are facing serious electromagnetic interference,and interference signal recognition is a crucial foundation for targeted anti-interference.In this paper,we propose a novel interference ...Satellite communication systems are facing serious electromagnetic interference,and interference signal recognition is a crucial foundation for targeted anti-interference.In this paper,we propose a novel interference recognition algorithm called HDCGD-CBAM,which adopts the time-frequency images(TFIs)of signals to effectively extract the temporal and spectral characteristics.In the proposed method,we improve the Convolutional Long Short-Term Memory Deep Neural Network(CLDNN)in two ways.First,the simpler Gate Recurrent Unit(GRU)is used instead of the Long Short-Term Memory(LSTM),reducing model parameters while maintaining the recognition accuracy.Second,we replace convolutional layers with hybrid dilated convolution(HDC)to expand the receptive field of feature maps,which captures the correlation of time-frequency data on a larger spatial scale.Additionally,Convolutional Block Attention Module(CBAM)is introduced before and after the HDC layers to strengthen the extraction of critical features and improve the recognition performance.The experiment results show that the HDCGD-CBAM model significantly outper-forms existing methods in terms of recognition accuracy and complexity.When Jamming-to-Signal Ratio(JSR)varies from-30dB to 10dB,it achieves an average accuracy of 78.7%and outperforms the CLDNN by 7.29%while reducing the Floating Point Operations(FLOPs)by 79.8%to 114.75M.Moreover,the proposed model has fewer parameters with 301k compared to several state-of-the-art methods.展开更多
As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extract...In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extraction ability,and they cannot mine the discriminating features of the protocol data thoroughly.To address the issue,we propose an unknown application layer protocol recognition method based on deep clustering.Deep clustering which consists of the deep neural network and the clustering algorithm can automatically extract the features of the input and cluster the data based on the extracted features.Compared with the traditional clustering methods,deep clustering boasts of higher clustering accuracy.The proposed method utilizes network-in-network(NIN),channel attention,spatial attention and Bidirectional Long Short-term memory(BLSTM)to construct an autoencoder to extract the spatial-temporal features of the protocol data,and utilizes the unsupervised clustering algorithm to recognize the unknown protocols based on the features.The method firstly extracts the application layer protocol data from the network traffic and transforms the data into one-dimensional matrix.Secondly,the autoencoder is pretrained,and the protocol data is compressed into low dimensional latent space by the autoencoder and the initial clustering is performed with K-Means.Finally,the clustering loss is calculated and the classification model is optimized according to the clustering loss.The classification results can be obtained when the classification model is optimal.Compared with the existing unknown protocol recognition methods,the proposed method utilizes deep clustering to cluster the unknown protocols,and it can mine the key features of the protocol data and recognize the unknown protocols accurately.Experimental results show that the proposed method can effectively recognize the unknown protocols,and its performance is better than other methods.展开更多
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr...Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.展开更多
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor...In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.展开更多
文摘A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.
文摘In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金supported by the Key Research and Development Program of Jiangsu Province under Grant BE2022059-3,CTBC Bank through the Industry-Academia Cooperation Project,as well as by the Ministry of Science and Technology of Taiwan through Grants MOST-108-2218-E-002-055,MOST-109-2223-E-009-002-MY3,MOST-109-2218-E-009-025,and MOST431109-2218-E-002-015.
文摘Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.
文摘Pointer instruments are widely used in the nuclear power industry. Addressing the issues of low accuracy and slow detection speed in recognizing pointer meter readings under varying types and distances, this paper proposes a recognition method based on YOLOv8 and DeepLabv3+. To improve the image input quality of the DeepLabv3+ model, the YOLOv8 detector is used to quickly locate the instrument region and crop it as the input image for recognition. To enhance the accuracy and speed of pointer recognition, the backbone network of DeepLabv3+ was replaced with Mo-bileNetv3, and the ECA+ module was designed to replace its SE module, reducing model parameters while improving recognition precision. The decoder’s fourfold-up sampling was replaced with two twofold-up samplings, and shallow feature maps were fused with encoder features of the corresponding size. The CBAM module was introduced to improve the segmentation accuracy of the pointer. Experiments were conducted using a self-made dataset of pointer-style instruments from nuclear power plants. Results showed that this method achieved a recognition accuracy of 94.5% at a precision level of 2.5, with an average error of 1.522% and an average total processing time of 0.56 seconds, demonstrating strong performance.
文摘Background Enterotoxigenic Escherichia coli(E.coli)is a threat to humans and animals that causes intestinal dis-orders.Antimicrobial resistance has urged alternatives,including Lactobacillus postbiotics,to mitigate the effects of enterotoxigenic E.coli.Methods Forty-eight newly weaned pigs were allotted to NC:no challenge/no supplement;PC:F18^(+)E.coli chal-lenge/no supplement;ATB:F18^(+)E.coli challenge/bacitracin;and LPB:F18^(+)E.coli challenge/postbiotics and fed diets for 28 d.On d 7,pigs were orally inoculated withF18^(+)E.coli.At d 28,the mucosa-associated microbiota,immune and oxidative stress status,intestinal morphology,the gene expression of pattern recognition receptors(PRR),and intestinal barrier function were measured.Data were analyzed using the MIXED procedure in SAS 9.4.Results PC increased(P<0.05)Helicobacter mastomyrinus whereas reduced(P<0.05)Prevotella copri and P.ster-corea compared to NC.The LPB increased(P<0.05)P.stercorea and Dialister succinatiphilus compared with PC.The ATB increased(P<0.05)Propionibacterium acnes,Corynebacterium glutamicum,and Sphingomonas pseudosanguinis compared to PC.The PC tended to reduce(P=0.054)PGLYRP4 and increased(P<0.05)TLR4,CD14,MDA,and crypt cell proliferation compared with NC.The ATB reduced(P<0.05)NOD1 compared with PC.The LPB increased(P<0.05)PGLYRP4,and interferon-γand reduced(P<0.05)NOD1 compared with PC.The ATB and LPB reduced(P<0.05)TNF-αand MDA compared with PC.Conclusions TheF18^(+)E.coli challenge compromised intestinal health.Bacitracin increased beneficial bacteria show-ing a trend towards increasing the intestinal barrier function,possibly by reducing the expression of PRR genes.Lac-tobacillus postbiotics enhanced the immunocompetence of nursery pigs by increasing the expression of interferon-γand PGLYRP4,and by reducing TLR4,NOD1,and CD14.
基金supported by the National Natural Science Foundation of China,China (Grants No.62171232)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework.
基金supported by China Academy of Railway Sciences Corporation Limited(No.2021YJ127).
文摘Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.
基金supported by the Beijing Natural Science Foundation (5252014)the National Natural Science Foundation of China (62303063)。
文摘Bird vocalizations are pivotal for ecological monitoring,providing insights into biodiversity and ecosystem health.Traditional recognition methods often neglect phase information,resulting in incomplete feature representation.In this paper,we introduce a novel approach to bird vocalization recognition(BVR)that integrates both amplitude and phase information,leading to enhanced species identification.We propose MHARes Net,a deep learning(DL)model that employs residual blocks and a multi-head attention mechanism to capture salient features from logarithmic power(POW),Instantaneous Frequency(IF),and Group Delay(GD)extracted from bird vocalizations.Experiments on three bird vocalization datasets demonstrate our method's superior performance,achieving accuracy rates of 94%,98.9%,and 87.1%respectively.These results indicate that our approach provides a more effective representation of bird vocalizations,outperforming existing methods.This integration of phase information in BVR is innovative and significantly advances the field of automatic bird monitoring technology,offering valuable tools for ecological research and conservation efforts.
基金the financial support from Natural Science Foundation of Gansu Province(Nos.22JR5RA217,22JR5RA216)Lanzhou Science and Technology Program(No.2022-2-111)+1 种基金Lanzhou University of Arts and Sciences School Innovation Fund Project(No.XJ2022000103)Lanzhou College of Arts and Sciences 2023 Talent Cultivation Quality Improvement Project(No.2023-ZL-jxzz-03)。
文摘Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.
基金National Natural Science Foundation of China(62071147)。
文摘Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method.
基金supported in part by the 2023 Key Supported Project of the 14th Five Year Plan for Education and Science in Hunan Province with No.ND230795.
文摘In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.
文摘Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金This work was supported by the Beijing Natural Science Foundation(L202003).
文摘Satellite communication systems are facing serious electromagnetic interference,and interference signal recognition is a crucial foundation for targeted anti-interference.In this paper,we propose a novel interference recognition algorithm called HDCGD-CBAM,which adopts the time-frequency images(TFIs)of signals to effectively extract the temporal and spectral characteristics.In the proposed method,we improve the Convolutional Long Short-Term Memory Deep Neural Network(CLDNN)in two ways.First,the simpler Gate Recurrent Unit(GRU)is used instead of the Long Short-Term Memory(LSTM),reducing model parameters while maintaining the recognition accuracy.Second,we replace convolutional layers with hybrid dilated convolution(HDC)to expand the receptive field of feature maps,which captures the correlation of time-frequency data on a larger spatial scale.Additionally,Convolutional Block Attention Module(CBAM)is introduced before and after the HDC layers to strengthen the extraction of critical features and improve the recognition performance.The experiment results show that the HDCGD-CBAM model significantly outper-forms existing methods in terms of recognition accuracy and complexity.When Jamming-to-Signal Ratio(JSR)varies from-30dB to 10dB,it achieves an average accuracy of 78.7%and outperforms the CLDNN by 7.29%while reducing the Floating Point Operations(FLOPs)by 79.8%to 114.75M.Moreover,the proposed model has fewer parameters with 301k compared to several state-of-the-art methods.
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
基金This work is supported by the National Key R&D Program of China(2017YFB0802900).
文摘In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extraction ability,and they cannot mine the discriminating features of the protocol data thoroughly.To address the issue,we propose an unknown application layer protocol recognition method based on deep clustering.Deep clustering which consists of the deep neural network and the clustering algorithm can automatically extract the features of the input and cluster the data based on the extracted features.Compared with the traditional clustering methods,deep clustering boasts of higher clustering accuracy.The proposed method utilizes network-in-network(NIN),channel attention,spatial attention and Bidirectional Long Short-term memory(BLSTM)to construct an autoencoder to extract the spatial-temporal features of the protocol data,and utilizes the unsupervised clustering algorithm to recognize the unknown protocols based on the features.The method firstly extracts the application layer protocol data from the network traffic and transforms the data into one-dimensional matrix.Secondly,the autoencoder is pretrained,and the protocol data is compressed into low dimensional latent space by the autoencoder and the initial clustering is performed with K-Means.Finally,the clustering loss is calculated and the classification model is optimized according to the clustering loss.The classification results can be obtained when the classification model is optimal.Compared with the existing unknown protocol recognition methods,the proposed method utilizes deep clustering to cluster the unknown protocols,and it can mine the key features of the protocol data and recognize the unknown protocols accurately.Experimental results show that the proposed method can effectively recognize the unknown protocols,and its performance is better than other methods.
基金funded by the National Science and Technology Council,Taiwan(Grant No.NSTC 112-2121-M-039-001)by China Medical University(Grant No.CMU112-MF-79).
文摘Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R194)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.