Echo canceller generally needs a double-talk detector which is used to keep the adaptive filter from diverging in the appearance of near-end speech. In this paper we adopt a new double-talk detection algorithm based o...Echo canceller generally needs a double-talk detector which is used to keep the adaptive filter from diverging in the appearance of near-end speech. In this paper we adopt a new double-talk detection algorithm based onl 2 norm to detect the existence of near-end speech in an acoustic echo canceller. We analyze this algorithm from the point of view of functional analysis and point out that the proposed double-talk detection algorithm has the same performance as the classic one in a finite Banach space. The remarkable feature of this algorithm is its higher accuracy and better computation complexity. The fine properties of this algorithm are confirmed by computer simulation and the application in a multimedia communication system. Key words acoustic echo cancellation - double-talk, detection - l 2 norm - adaptive FIR CLC number TN 911 Foundation item: Supported by the the National High Technology Development of China (863-306-ZT05)Biography: Wang Shao-wei (1975-) male, Ph. D candidate, research direction: multimedia communication.展开更多
In this paper, we propose a new approach to the problem of degree reduction of Bézier curves based on the given endpoint constraints. A differential term is added for the purpose of controlling the smoothness to ...In this paper, we propose a new approach to the problem of degree reduction of Bézier curves based on the given endpoint constraints. A differential term is added for the purpose of controlling the smoothness to a certain extent. Considering the adjustment of second derivative in curve design, a modified objective function including two parts is constructed here. One part is a kind of measure of the distance between original high order Bézier curve and degree-reduced curve. The other part represents the second derivative of degree-reduced curve. We tackle two kinds of conditions which are position vector constraint and tangent vector constraint respectively. The explicit representations of unknown points are presented. Some examples are illustrated to show the influence of the differential terms to approximation and smoothness effect.展开更多
Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvo...Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvolution. Experiments show that the details of the image destroy the structure of the kernel, especially when the blur kernel is large. So we extract the image structure with salient edges by the method based on RTV. In addition, the traditional method for motion blur kernel estimation based on sparse priors is conducive to gain a sparse blur kernel. But these priors do not ensure the continuity of blur kernel and sometimes induce noisy estimated results. Therefore we propose the kernel refinement method based on L0 to overcome the above shortcomings. In terms of non-blind deconvolution we adopt the L1/L2 regularization term. Compared with the traditional method, the method based on L1/L2 norm has better adaptability to image structure, and the constructed energy functional can better describe the sharp image. For this model, an effective algorithm is presented based on alternating minimization algorithm.展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc...Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.展开更多
We obtain an upper bound for the average error of the quasi-Griinwald interpolation based on the zeros of Chebyshev polynomial of the second kind in the Wiener space.
In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second ...In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin C1 -P2 macro element, the nonconforming Morley element, the C1 -Q2 macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang- Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the L2 norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm?展开更多
Presents the abstract L...-norm error estimate of nonconforming finite element method. Use of the Aubin Nitsche Lemma in estimating nonconforming finite element methods; Details on the equations.
文摘Echo canceller generally needs a double-talk detector which is used to keep the adaptive filter from diverging in the appearance of near-end speech. In this paper we adopt a new double-talk detection algorithm based onl 2 norm to detect the existence of near-end speech in an acoustic echo canceller. We analyze this algorithm from the point of view of functional analysis and point out that the proposed double-talk detection algorithm has the same performance as the classic one in a finite Banach space. The remarkable feature of this algorithm is its higher accuracy and better computation complexity. The fine properties of this algorithm are confirmed by computer simulation and the application in a multimedia communication system. Key words acoustic echo cancellation - double-talk, detection - l 2 norm - adaptive FIR CLC number TN 911 Foundation item: Supported by the the National High Technology Development of China (863-306-ZT05)Biography: Wang Shao-wei (1975-) male, Ph. D candidate, research direction: multimedia communication.
文摘In this paper, we propose a new approach to the problem of degree reduction of Bézier curves based on the given endpoint constraints. A differential term is added for the purpose of controlling the smoothness to a certain extent. Considering the adjustment of second derivative in curve design, a modified objective function including two parts is constructed here. One part is a kind of measure of the distance between original high order Bézier curve and degree-reduced curve. The other part represents the second derivative of degree-reduced curve. We tackle two kinds of conditions which are position vector constraint and tangent vector constraint respectively. The explicit representations of unknown points are presented. Some examples are illustrated to show the influence of the differential terms to approximation and smoothness effect.
基金Partially Supported by National Natural Science Foundation of China(No.61173102)
文摘Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvolution. Experiments show that the details of the image destroy the structure of the kernel, especially when the blur kernel is large. So we extract the image structure with salient edges by the method based on RTV. In addition, the traditional method for motion blur kernel estimation based on sparse priors is conducive to gain a sparse blur kernel. But these priors do not ensure the continuity of blur kernel and sometimes induce noisy estimated results. Therefore we propose the kernel refinement method based on L0 to overcome the above shortcomings. In terms of non-blind deconvolution we adopt the L1/L2 regularization term. Compared with the traditional method, the method based on L1/L2 norm has better adaptability to image structure, and the constructed energy functional can better describe the sharp image. For this model, an effective algorithm is presented based on alternating minimization algorithm.
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
基金supported by the National Natural Science Foundation of China grants No.11971241.
文摘Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.
基金Foundation item: Supported bv the National Natural Science Foundation of China(10471010)
文摘We obtain an upper bound for the average error of the quasi-Griinwald interpolation based on the zeros of Chebyshev polynomial of the second kind in the Wiener space.
基金Supported by the National Natural Science Foundation of China (51406044)the Fundamental Research Foundation for Universities of Heilongjiang Province of China under Grant (LGYC2018JC001)。
文摘In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin C1 -P2 macro element, the nonconforming Morley element, the C1 -Q2 macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang- Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the L2 norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm?
文摘Presents the abstract L...-norm error estimate of nonconforming finite element method. Use of the Aubin Nitsche Lemma in estimating nonconforming finite element methods; Details on the equations.