期刊文献+

基于类中心和密切度的L-2范数FSVM 被引量:1

L-2 Norm FSVM Based on Combining Cluster Center with Affinity
在线阅读 下载PDF
导出
摘要 支持向量机(SVM)是解决回归问题的一种有效的方法,但传统的支持向量机对样本中的噪声和孤立点非常敏感。为了克服这个问题,文中提出了一种基于类中心和密切度的L-2范数模糊支持向量机(L-2范数FSVM),即模糊隶属度的建立不仅根据样本到类中心的距离,而且根据样本点和其目标点之间的密切度。仿真实验结果显示了该方法有效地减少了噪声的影响,改进了回归的精度,增强了推广能力。 Support vector machine(SVM) is an effective method for resolving regression problem,however,traditional SVM is very sensitive to noises and outliers in the training sample.In order to overcome this problem,L-2 norm fuzzy support vector machine(L-2 norm FSVM) based on combining cluster center with affinity is proposed in this paper.The fuzzy membership is defined not only by the distance between a point and its cluster center,but also by two different points of the sample,which is depicted as the affinity between them.Simulation results for artificial data show that the proposed method gives good performance on reducing the effects of noise and improves the regression accuracy and generalization.
出处 《南京邮电大学学报(自然科学版)》 2010年第6期34-37,42,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(10371106 10471114 61070234 61071167) 江苏省高校自然科学基金(04KJB110097 08KJB520003) 南京邮电大学攀登计划(NY207064)资助项目
关键词 L-2范数模糊支持向量机(L-2范数FSVM) 模糊隶属度函数 类中心 密切度 信息几何 L-2 norm fuzzy support vector machine(L-2 norm FSVM) fuzzy membership function cluster center affinity information geometry
  • 相关文献

参考文献15

  • 1BURGES C J C.A tutorial on support vector machines for pattern recognition[C] ∥Data Mining and Knowledge Discovery.1998:121-167.
  • 2GUO Juo,TAKAHASHI N,NISHI T.A Novel Sequential Minimal Optimization Algorithm for Support Vector Regression[C] ∥ICONIP.2006:827-836.
  • 3LU Yanling,LI Lei,ZHOU Mengmeng.A New Fuzzy Support Vector Machine Based on Mixed Kernel Function[C] ∥Proceedings of 2009 International Conference on Machine Learning and Cybernetics.2009:526-531.
  • 4ZHOU Mengmeng,LI Lei,LU Yanling.Fuzzy Support Vector Machine Based on Density with Dual Membership[C] ∥Proceedings of International Conference on Machine Learning and Cybernetics.2009:674-678.
  • 5MANSOURI A,AFFENDEY L S,MAMAT A.A New Fuzzy Support Vector Machine Method for Named Entity Recognition[C] ∥International Conference on Computer Science and Information Technology.2008:24-28.
  • 6BURGES C J C.Geometry and invariance in kernel based methods[C] ∥Advances in Kernel Methods-Support Vector Learning.1999:89-116.
  • 7杜喆,刘三阳,齐小刚.一种新隶属度函数的模糊支持向量机[J].系统仿真学报,2009,21(7):1901-1903. 被引量:27
  • 8XIA Hong.Feature Selection based on Fuzzy SVM[C] ∥Fifth International Conference on Fuzzy Systems and Knowledge Discovery.2008:586-589.
  • 9KUI Wu,KIM Huiyap.Studies-Labeling Image Scheme Using Fuzzy Support Vector Machine[J].Studies in Computational Intelligence,2008,96:271-290.
  • 10INOUE T,ABE S.Fuzzy support vector machines for pattern classification[C] ∥International Joint Conference on Neural Networks.2001:1449-1454.

二级参考文献10

共引文献26

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部