The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational...The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational Chebyshev basis.展开更多
讨论一类不确定非线性分数阶非等阶(noncommensurate)的系统的控制问题。假设系统含的不确定包括正实不确定(positive real uncertainty)项和非线性函数完全未知,首先利用RBF神经网络近似未知非线性函数,再基于系统的连续频率分布模型...讨论一类不确定非线性分数阶非等阶(noncommensurate)的系统的控制问题。假设系统含的不确定包括正实不确定(positive real uncertainty)项和非线性函数完全未知,首先利用RBF神经网络近似未知非线性函数,再基于系统的连续频率分布模型将分数阶系统转化为等价的无穷维分布状态变量的整数阶系统,结合间接Lyapunov方法及线性矩阵不等式(LMI)方法,给出了系统鲁棒渐近稳定的充分条件。理论和实例仿真验证了方法的有效性。展开更多
文摘The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational Chebyshev basis.
文摘讨论一类不确定非线性分数阶非等阶(noncommensurate)的系统的控制问题。假设系统含的不确定包括正实不确定(positive real uncertainty)项和非线性函数完全未知,首先利用RBF神经网络近似未知非线性函数,再基于系统的连续频率分布模型将分数阶系统转化为等价的无穷维分布状态变量的整数阶系统,结合间接Lyapunov方法及线性矩阵不等式(LMI)方法,给出了系统鲁棒渐近稳定的充分条件。理论和实例仿真验证了方法的有效性。