摘要
本文利用一种新的高阶矢量基函数求解了三维时域磁场积分方程,该基函数定义在一个曲边三角形贴片上并用拉格朗日插值多项式来表示每一个贴片内的未知电流密度.该基函数的实质就是将拉格朗日插值多项式的插值点选为高斯积分结点,极大地简化和加快了时域积分方程矩量法的繁琐的时间和空间积分运算;另外,该基函数不要求网格为规范网格,给复杂目标的网格剖分带来很大方便.在空间上利用点匹配方法求解了时域磁场积分方程,数值计算结果表明了该方法求解时域积分方程的精确性和高效性.
A high order vector basis function is used for solving three-dimensional time-domain magnetic integral equations (TDMFIE) .These basis functions are defined over curvilinear triangular patches and represent the unknown electric current density within each patch using the Lagrange interpolation polynomials. The highlight of these basis functions is that the Lagrange interpolation points are chosen to be the same as the nodes of the Gaussian quadratures.As a result, the tedious evaluation of the space-time integrals in the methed-of-moments of the time-domain integral equations is greatly simplified and accelerated. Additionally, the surface of an object to be analyzed can be easily meshed because these basis functions do not require the side of a triangular patch to be entirely shared by another triangular pateh,which is very stringent requirement for traditional vector basis functions.These basis functions are implemented with point matching for the solution of TDMFIE. Simulation results are presented to demonstrate the accuracy and efficiency of the solution of TDMFIE by using these high order vector basis functions.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2005年第9期1618-1622,共5页
Acta Electronica Sinica
基金
国家自然科学基金资助项目(No.60371009)
国家部级基金资助项目(No.51403010604DZ0233)
关键词
高阶方法
高阶矢量基函数
点匹配
时域磁场积分方程
high order method
high order vector basis function
point matching
time-domain magnetic integral equation