To investigate the effects of local injection of different doses of lanthanum chloride (LaCl3) on aseptic inflammation in mice stimulated by wear particles from artificial joints, the particles were prepared by vacu...To investigate the effects of local injection of different doses of lanthanum chloride (LaCl3) on aseptic inflammation in mice stimulated by wear particles from artificial joints, the particles were prepared by vacuum ball mill in vitro and air-pouch models were performed with 45 male BALB/c mice that were randomly divided into blank control group, wear particle group and wear parti- cle + LaCl3 (0.1, 0.9 and 8.1 μmol) group. All animals were sacrificed and tissue specimens were harvested 7 days after treatment. Hematoxylin and eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reac- tion (RT-PCR) and western blot were applied to observe inflammatory reaction and detect the expression of pro-inflammatory cyto- kines (TNF-et, IL-1β) and nuclear factor-κB (NF-κB) in mRNA and protein levels in air-pouch membrances. The results showed that wear particles could stimulate aseptic inflammation in vivo effectively; 0.9 μmol LaCl3 could significantly inhibit wear parti- cle-induced gene and protein expression of pro-inflammatory cytokines and NF-Id3 (P〈0.05); 0.1 and 8. 1 μmol LaCl3 did not exert an inflammation-inhibiting effect and even caused adverse effects at 8.1 μmol. In conclusion, LaC13 played a protective role against wear particle-induced aseptic inflammation dose-dependently, which was involved in NF-κB related signaling pathways.展开更多
The present investigation was carried out to evaluate anti-inflammatory and membrane stabilizing properties of methyl jasmonate(MJ) in experimental rat models of acute and chronic inflammation.The effects of MJ on acu...The present investigation was carried out to evaluate anti-inflammatory and membrane stabilizing properties of methyl jasmonate(MJ) in experimental rat models of acute and chronic inflammation.The effects of MJ on acute inflammation were assessed using carrageenan-induced rat's paw edema model.The granuloma air pouch model was employed to evaluate the effects of MJ on chronic inflammation produced by carrageenan in rats.The number of white blood cells(WBC) in pouch exudates was estimated using light microscopy.The levels of biomarkers of oxidative stress,such as malondialdehyde(MDA),glutathione(GSH) and activity of antioxidant enzymes in the exudates,were determined using spectrophotometry.The membrane stabilizing property of MJ was assessed based on inhibition of hemolysis of rat red blood cells(RBC) exposed to hypotonic medium.Our results indicated that MJ(25-100 mg·kg-1,i.p.) produced significant anti-inflammatory activity in carrageenan-induced paw edema in rats(P < 0.05).MJ reduced the volume of pouch exudates and the number of WBC in carrageenan-induced granulomatous inflammation.It also exhibited potent antioxidant and membrane stabilizing activities.In conclusion,these findings suggest the therapeutic potentials of methyl jasmonate in disease conditions associated with inflammation and its anti-inflammatory activity may be related to its antioxidant and membrane stabilizing activities.展开更多
基金supported by National Natural Science Foundation of China (81160222)the Foundation of Health Department of JiangxiProvince (20121044)
文摘To investigate the effects of local injection of different doses of lanthanum chloride (LaCl3) on aseptic inflammation in mice stimulated by wear particles from artificial joints, the particles were prepared by vacuum ball mill in vitro and air-pouch models were performed with 45 male BALB/c mice that were randomly divided into blank control group, wear particle group and wear parti- cle + LaCl3 (0.1, 0.9 and 8.1 μmol) group. All animals were sacrificed and tissue specimens were harvested 7 days after treatment. Hematoxylin and eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reac- tion (RT-PCR) and western blot were applied to observe inflammatory reaction and detect the expression of pro-inflammatory cyto- kines (TNF-et, IL-1β) and nuclear factor-κB (NF-κB) in mRNA and protein levels in air-pouch membrances. The results showed that wear particles could stimulate aseptic inflammation in vivo effectively; 0.9 μmol LaCl3 could significantly inhibit wear parti- cle-induced gene and protein expression of pro-inflammatory cytokines and NF-Id3 (P〈0.05); 0.1 and 8. 1 μmol LaCl3 did not exert an inflammation-inhibiting effect and even caused adverse effects at 8.1 μmol. In conclusion, LaC13 played a protective role against wear particle-induced aseptic inflammation dose-dependently, which was involved in NF-κB related signaling pathways.
基金The authors are grateful to Professors E.A.Bababumi and O.G.Ademowo for introducing methyl jasmonate to us.Authors also expressed their appreciations to A.I.Omogbiya for proof reading the manuscript.
文摘The present investigation was carried out to evaluate anti-inflammatory and membrane stabilizing properties of methyl jasmonate(MJ) in experimental rat models of acute and chronic inflammation.The effects of MJ on acute inflammation were assessed using carrageenan-induced rat's paw edema model.The granuloma air pouch model was employed to evaluate the effects of MJ on chronic inflammation produced by carrageenan in rats.The number of white blood cells(WBC) in pouch exudates was estimated using light microscopy.The levels of biomarkers of oxidative stress,such as malondialdehyde(MDA),glutathione(GSH) and activity of antioxidant enzymes in the exudates,were determined using spectrophotometry.The membrane stabilizing property of MJ was assessed based on inhibition of hemolysis of rat red blood cells(RBC) exposed to hypotonic medium.Our results indicated that MJ(25-100 mg·kg-1,i.p.) produced significant anti-inflammatory activity in carrageenan-induced paw edema in rats(P < 0.05).MJ reduced the volume of pouch exudates and the number of WBC in carrageenan-induced granulomatous inflammation.It also exhibited potent antioxidant and membrane stabilizing activities.In conclusion,these findings suggest the therapeutic potentials of methyl jasmonate in disease conditions associated with inflammation and its anti-inflammatory activity may be related to its antioxidant and membrane stabilizing activities.