With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a ...With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a significant impact on net primary productivity(NPP) and affect the global carbon cycle. Currently, the seasonal response characteristics of NPP to phenological changes in dryland ecosystems are still not well defined. This article calibrated and analyzed the normalized difference vegetation index(NDVI)time series of Advanced Very-High-Resolution Radiometer(AVHRR) data from 1982 to 2015 in the Loess Plateau, China. The spatial and temporal distributions of vegetation phenology and NPP in the Loess Plateau under semihumid and semiarid conditions were investigated. The seasonal variation in the NPP response to vegetation phenology under the climate change was also analyzed. The results showed that, different from the northern forest, there was distinct spatial heterogeneity in the effect of climate change on the dynamic change in vegetation growth in the Loess Plateau: 1) an advance of the start of the growing season(SOS) and a delay of the end of the growing season(EOS) significantly increased the NPP in spring and autumn, respectively, in the humid southeast;2) in the arid northwest, the NPP did not significantly increase in spring and autumn but significantly decreased in summer.展开更多
Drought has pronounced and immediate impacts on agricultural production,especially in semi-arid and arid rainfed agricultural regions.Quantification of drought and its impact on crop yield is essential to agricultural...Drought has pronounced and immediate impacts on agricultural production,especially in semi-arid and arid rainfed agricultural regions.Quantification of drought and its impact on crop yield is essential to agricultural water resource management and food security.We investigated drought and its impact on winter wheat(Triticum aestivum L.)yield in the Chinese Loess Plateau from 2001 to 2015.Specifically,we performed a varimax rotated principal component analysis on drought severity index(DSI)separately for four winter wheat growth periods:pre-sowing growth period(PG),early growth period(EG),middle growth period(MG),and late growth period(LG),resulting in three major subregional DSI dynamics for each growth period.The county-level projections of these major dynamics were then used to evaluate the growth period-specific impacts of DSI on winter wheat yields by using multiple linear regression analysis.Our results showed that the growth period-specific subregions had different major DSI dynamics.During PG,the northwestern area exhibited a rapid wetting trend,while small areas in the south showed a slight drying trend.The remaining subregions fluctuated between dryness and wetness.During EG,the northeastern and western areas exhibited a mild wetting trend.The remaining subregions did not display clear wetting or drying trends.During MG,the eastern and southwestern areas showed slight drying and wetting trends,respectively.The subregions scattered in the north and south had a significant wetting trend.During LG,large areas in the east and west exhibited wetting trends,whereas small parts in south-central area had a slight drying trend.Most counties in the north showed significant and slight wetting trends during PG,EG,and LG,whereas a few southwestern counties exhibited significant drying trends during PG and MG.Our analysis identified close and positive relationships between yields and DSI during LG,and revealed that almost all of the counties were vulnerable to drought.Similar but less strong relationships existed for MG,in which northeastern and eastern counties were more drought-vulnerable than other counties.In contrast,a few drought-sensitive counties were mainly located in the southwestern and eastern areas during PG,and in the northeastern corner of the study region during EG.Overall,our study dissociated growth period-specific and spatial location-specific impacts of drought on winter wheat yield,and might contribute to a better understanding of monitoring and early warning of yield loss.展开更多
Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and under...Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and understanding and predicting the influence of hydrologic cycle variations on future climate and land use changes.Quantifying the influence of various meteorological variables on ET_(0) is not only helpful for predicting actual evapotranspiration but also has important implications for understanding the impact of global climate change on regional water resources.Based on daily data from 69 meteorological stations,the present study analyzed the spatiotemporal pattern of ET_(0) and major contributing meteorological variables to ET_(0) from 1960 to 2017 by the segmented re-gression model,Mann-Kendall test,wavelet analysis,generalized linear model,and detrending method.The results showed that the annual ET_(0) declined slightly because of the combined effects of the reduction in solar radiation and wind speed and the increase in vapor pressure deficit(VPD)and average air temperature in the Loess Plateau(LP)during the past 58 yr.Four change points were detected in 1972,1990,1999,and 2010,and the annual ET_(0) showed a zigzag change trend of‘increasing-decreasing-increasing-decreasing-increasing’.Wind speed and VPD played a leading role in the ET_(0) changes from 1960 to 1990 and from 1991 to 2017,respectively.This study confirms that the dominant meteorological factors affecting ET_(0) had undergone significant changes due to global climate change and vegetation greening in the past 58 years,and VPD had become the major factor controlling the ET_(0) changes on the LP.The data presented herein will contribute to increasing the accuracy of predictions on future changes in ET_(0).展开更多
With the implementation of the Grain for Green Project,vegetation cover has experienced great changes throughout the Loess Plateau(LP).These changes substantially influence the intensity of evapotranspiration(ET),ther...With the implementation of the Grain for Green Project,vegetation cover has experienced great changes throughout the Loess Plateau(LP).These changes substantially influence the intensity of evapotranspiration(ET),thereby regulating the local microclimate.In this study,we estimated ET based on the Penman-Monteith(PM)method and Priestley-Taylor Jet Propulsion Laboratory(PT-JPL)model and quantitatively estimated the mass of water vapor and heat absorption on the LP.We analyzed the regulatory effect of vegetation restoration on local microclimate from 2000 to 2015 and found the following:(1)Both the leaf area index(LAI)value and actual ET increased significantly across the region during the study period,and there was a significant positive correlation between them in spatial patterns and temporal trends.(2)Vegetation regulated the local microclimate through ET,which increased the absolute humidity by 2.76-3.29 g m^(-3),increased the relative humidity by 15.43%-19.31%and reduced the temperature by 5.38-6.43℃per day from June to September.(3)The cooling and humidifying effects of vegetation were also affected by the temperature on the LP.(4)Correlation analysis showed that LAI was significantly correlated with temperature at the monthly scale,and the response of vegetation growth to temperature had no time-lag effect.This paper presents new insights into quantitatively assessing the regulatory effect of vegetation on the local microclimate through ET and helps to objectively evaluate the ecological effects of the Grain for Green Project on the LP.展开更多
基金Under the auspices of MOE(Ministry of Education in China)Project of Humanities and Social Sciences(No.20YJC840027)Natural Science Basic Research Program of Shaanxi,China(No.2021JQ-771,No.2021JQ-768)Soft Science Project of Xi’an Science and Technology Bureau,Shaanxi Province(No.2021-0013)。
文摘With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a significant impact on net primary productivity(NPP) and affect the global carbon cycle. Currently, the seasonal response characteristics of NPP to phenological changes in dryland ecosystems are still not well defined. This article calibrated and analyzed the normalized difference vegetation index(NDVI)time series of Advanced Very-High-Resolution Radiometer(AVHRR) data from 1982 to 2015 in the Loess Plateau, China. The spatial and temporal distributions of vegetation phenology and NPP in the Loess Plateau under semihumid and semiarid conditions were investigated. The seasonal variation in the NPP response to vegetation phenology under the climate change was also analyzed. The results showed that, different from the northern forest, there was distinct spatial heterogeneity in the effect of climate change on the dynamic change in vegetation growth in the Loess Plateau: 1) an advance of the start of the growing season(SOS) and a delay of the end of the growing season(EOS) significantly increased the NPP in spring and autumn, respectively, in the humid southeast;2) in the arid northwest, the NPP did not significantly increase in spring and autumn but significantly decreased in summer.
基金funded by the National Natural Science Foundation of China (42071144)the Fundamental Research Funds for the Central Universities (2019TS018)
文摘Drought has pronounced and immediate impacts on agricultural production,especially in semi-arid and arid rainfed agricultural regions.Quantification of drought and its impact on crop yield is essential to agricultural water resource management and food security.We investigated drought and its impact on winter wheat(Triticum aestivum L.)yield in the Chinese Loess Plateau from 2001 to 2015.Specifically,we performed a varimax rotated principal component analysis on drought severity index(DSI)separately for four winter wheat growth periods:pre-sowing growth period(PG),early growth period(EG),middle growth period(MG),and late growth period(LG),resulting in three major subregional DSI dynamics for each growth period.The county-level projections of these major dynamics were then used to evaluate the growth period-specific impacts of DSI on winter wheat yields by using multiple linear regression analysis.Our results showed that the growth period-specific subregions had different major DSI dynamics.During PG,the northwestern area exhibited a rapid wetting trend,while small areas in the south showed a slight drying trend.The remaining subregions fluctuated between dryness and wetness.During EG,the northeastern and western areas exhibited a mild wetting trend.The remaining subregions did not display clear wetting or drying trends.During MG,the eastern and southwestern areas showed slight drying and wetting trends,respectively.The subregions scattered in the north and south had a significant wetting trend.During LG,large areas in the east and west exhibited wetting trends,whereas small parts in south-central area had a slight drying trend.Most counties in the north showed significant and slight wetting trends during PG,EG,and LG,whereas a few southwestern counties exhibited significant drying trends during PG and MG.Our analysis identified close and positive relationships between yields and DSI during LG,and revealed that almost all of the counties were vulnerable to drought.Similar but less strong relationships existed for MG,in which northeastern and eastern counties were more drought-vulnerable than other counties.In contrast,a few drought-sensitive counties were mainly located in the southwestern and eastern areas during PG,and in the northeastern corner of the study region during EG.Overall,our study dissociated growth period-specific and spatial location-specific impacts of drought on winter wheat yield,and might contribute to a better understanding of monitoring and early warning of yield loss.
基金Under the auspices of the Chinese Academy of Sciences(CAS)Strategic Leading Science and Technology Project Category A(No.XDA23100203)National Natural Science Foundation of China(No.42071144,41501093,41771118)+1 种基金Key Research and Development Program of China(No.2016YFC0501601)Fundamental Research Funds for the Central Universities(No.GK202003060)。
文摘Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and understanding and predicting the influence of hydrologic cycle variations on future climate and land use changes.Quantifying the influence of various meteorological variables on ET_(0) is not only helpful for predicting actual evapotranspiration but also has important implications for understanding the impact of global climate change on regional water resources.Based on daily data from 69 meteorological stations,the present study analyzed the spatiotemporal pattern of ET_(0) and major contributing meteorological variables to ET_(0) from 1960 to 2017 by the segmented re-gression model,Mann-Kendall test,wavelet analysis,generalized linear model,and detrending method.The results showed that the annual ET_(0) declined slightly because of the combined effects of the reduction in solar radiation and wind speed and the increase in vapor pressure deficit(VPD)and average air temperature in the Loess Plateau(LP)during the past 58 yr.Four change points were detected in 1972,1990,1999,and 2010,and the annual ET_(0) showed a zigzag change trend of‘increasing-decreasing-increasing-decreasing-increasing’.Wind speed and VPD played a leading role in the ET_(0) changes from 1960 to 1990 and from 1991 to 2017,respectively.This study confirms that the dominant meteorological factors affecting ET_(0) had undergone significant changes due to global climate change and vegetation greening in the past 58 years,and VPD had become the major factor controlling the ET_(0) changes on the LP.The data presented herein will contribute to increasing the accuracy of predictions on future changes in ET_(0).
基金National Natural Science Foundation of China,No.41771118,No.42071144The Fundamental Research Funds for the Central Universities,No.GK202003060。
文摘With the implementation of the Grain for Green Project,vegetation cover has experienced great changes throughout the Loess Plateau(LP).These changes substantially influence the intensity of evapotranspiration(ET),thereby regulating the local microclimate.In this study,we estimated ET based on the Penman-Monteith(PM)method and Priestley-Taylor Jet Propulsion Laboratory(PT-JPL)model and quantitatively estimated the mass of water vapor and heat absorption on the LP.We analyzed the regulatory effect of vegetation restoration on local microclimate from 2000 to 2015 and found the following:(1)Both the leaf area index(LAI)value and actual ET increased significantly across the region during the study period,and there was a significant positive correlation between them in spatial patterns and temporal trends.(2)Vegetation regulated the local microclimate through ET,which increased the absolute humidity by 2.76-3.29 g m^(-3),increased the relative humidity by 15.43%-19.31%and reduced the temperature by 5.38-6.43℃per day from June to September.(3)The cooling and humidifying effects of vegetation were also affected by the temperature on the LP.(4)Correlation analysis showed that LAI was significantly correlated with temperature at the monthly scale,and the response of vegetation growth to temperature had no time-lag effect.This paper presents new insights into quantitatively assessing the regulatory effect of vegetation on the local microclimate through ET and helps to objectively evaluate the ecological effects of the Grain for Green Project on the LP.