The regional air quality modeling system RAMS-CMAQ was updated to incorporate secondary organic aerosol (SOA) production from isoprene and sesquiterpene and to account for the SOA production rate dependence on NOx a...The regional air quality modeling system RAMS-CMAQ was updated to incorporate secondary organic aerosol (SOA) production from isoprene and sesquiterpene and to account for the SOA production rate dependence on NOx and SOA aging. The system was then used to simulate spatiotemporal distributions of SOA concentration and its major constituents over China in winter. Modeled monthly mean SOA concentrations were high in central and eastern China and low in western regions. The highest SOA appeared in regions from Beijing-Tianjin-Hebei (BTH) to the middle reaches of the Yangtze River and areas from Sichuan Basin to the southwest border of China, where SOA contributions were less than 10% of the organic aerosol (OA). The lowest concentration was in the Qinghai-Tibet Plateau, accounting for 20%-30% of OA. It is notable that contributions from anthropogenic precursors to SOA were significant in winter, especially the wide areas of central and eastern China with contributions generally varying from 50% to 80% of the total SOA. Beijing was used as an example location representative of the heavily polluted BTH area for analysis of major components of SOA. Though the modeled concentration of SOA was still underestimated compared to the observations, it still showed that xylene and toluene were the two greatest contributors to anthropogenic SOA, which was in agreement with the observations. SOA produced from monoterpene was the greatest contributor to biogenic SOA due to the high mass yield of monoterpene, followed by isoprene. More than 57% of SOAs were aged, which may increase the extinction effect of SOA.展开更多
基金supported by the‘Strategic Priority Research Program(B)’of the Chinese Academy of Sciences[XDB05030105],[XDB05030102],[XDB05030103]the National Basic Research Program of China[2014CB953802]
文摘The regional air quality modeling system RAMS-CMAQ was updated to incorporate secondary organic aerosol (SOA) production from isoprene and sesquiterpene and to account for the SOA production rate dependence on NOx and SOA aging. The system was then used to simulate spatiotemporal distributions of SOA concentration and its major constituents over China in winter. Modeled monthly mean SOA concentrations were high in central and eastern China and low in western regions. The highest SOA appeared in regions from Beijing-Tianjin-Hebei (BTH) to the middle reaches of the Yangtze River and areas from Sichuan Basin to the southwest border of China, where SOA contributions were less than 10% of the organic aerosol (OA). The lowest concentration was in the Qinghai-Tibet Plateau, accounting for 20%-30% of OA. It is notable that contributions from anthropogenic precursors to SOA were significant in winter, especially the wide areas of central and eastern China with contributions generally varying from 50% to 80% of the total SOA. Beijing was used as an example location representative of the heavily polluted BTH area for analysis of major components of SOA. Though the modeled concentration of SOA was still underestimated compared to the observations, it still showed that xylene and toluene were the two greatest contributors to anthropogenic SOA, which was in agreement with the observations. SOA produced from monoterpene was the greatest contributor to biogenic SOA due to the high mass yield of monoterpene, followed by isoprene. More than 57% of SOAs were aged, which may increase the extinction effect of SOA.