Feature recognition aims at extracting manufacturing features with geometrical information from solid model and is considered to be an efficient way of changing the interactive NC machining programming mode.Existing r...Feature recognition aims at extracting manufacturing features with geometrical information from solid model and is considered to be an efficient way of changing the interactive NC machining programming mode.Existing recognition methods have some disadvantages in practical applications.They can essentially handle prismatic components with regular shapes and are difficult to recognize the intersecting features and curved surfaces.Besides,the robustness of them is not strong enough.A new feature recognition approach is proposed based on the analysis of aircraft integral panels' geometry and machining characteristics.In this approach,the aircraft integral panel is divided into a number of local machining domains.The machining domains are extracted and recognized first by finding the principal face of machining domain and extracting the sides around the principal face.Then the machining domains are divided into various features in terms of the face type.The main sections of the proposed method are presented including the definition,classification and structure of machining domain,the relationship between machining domain and principal face loop,the rules of machining domains recognition,and the algorithm of machining feature recognition.In addition,a robotic feature recognition module is developed for aircraft integral panels and tested with several panels.Test results show that the strategy presented is robust and valid.Features extracted can be post processed and linked to various downstream applications.The approach is able to solve the difficulties in recognizing the aircraft integral panel's features and automatic obtaining the machining zone in NC programming,and can be used to further develop the automatic programming of NC machining.展开更多
To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition appro...To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the practical slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created according to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blank. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels.展开更多
In order to enhance the NC programming efficiency and quality of aircraft structural parts (ASPs), an intelligent NC programming pattern driven by process schemes is presented. In this pattern, the NC machining cell...In order to enhance the NC programming efficiency and quality of aircraft structural parts (ASPs), an intelligent NC programming pattern driven by process schemes is presented. In this pattern, the NC machining cell is the minimal organizational structure in the technological process, consisting of an operation machining volume cell, and the type and parameters of the machining operation. After the machining cell construction, the final NC program can be easily obtained in a CAD/CAM system by instantiating the machining operation for each machining cell. Accordingly, how to automatically establish the machining cells is a key issue in intelligent NC program- ming. On the basis of the NC machining craft of ASP, the paper aims to make an in-depth research on this issue. Firstly, some new terms about the residual volume and the machinable volume are defined, and then, the technological process is modeled with a process scheme. Secondly, the approach to building the machining cells is introduced, in which real-time complement machining is mainly considered to avoid interference and overcutting. Thirdly, the implementing algorithm is designed and applied to the Intelligent NC Programming System of ASP. Finally, the developed algorithm is validated through two case studies.展开更多
镀锌高强钢因具有高强度、耐腐蚀以及延展性优良等特点被应用于汽车构件领域,在实现减重的同时,提高汽车安全性能。电阻点焊作为材料连接的重要技术之一,因具有焊接过程简单、热影响区小、焊接变形与应力小及焊接速度快等优点,被广泛应...镀锌高强钢因具有高强度、耐腐蚀以及延展性优良等特点被应用于汽车构件领域,在实现减重的同时,提高汽车安全性能。电阻点焊作为材料连接的重要技术之一,因具有焊接过程简单、热影响区小、焊接变形与应力小及焊接速度快等优点,被广泛应用于连接镀锌高强汽车用钢。但在焊接过程中锌镀层会在电阻热的作用下熔化并渗入至焊点内部,从而在焊接接头形成液态金属脆化裂纹(Liquid metal embrittlement cracks, LME),液态金属脆化裂纹会使焊接接头在拉伸过程中发生脆性断裂,严重恶化焊接接头的力学性能。从液态金属脆化裂纹形成机理、表征手段和母材显微组织的影响等方面详细总结了国内外在此方面的研究,并归纳出改善镀锌高强钢焊接接头液态金属脆化裂纹的措施,为后续的研究工作提供一定的参考与借鉴。展开更多
文摘Feature recognition aims at extracting manufacturing features with geometrical information from solid model and is considered to be an efficient way of changing the interactive NC machining programming mode.Existing recognition methods have some disadvantages in practical applications.They can essentially handle prismatic components with regular shapes and are difficult to recognize the intersecting features and curved surfaces.Besides,the robustness of them is not strong enough.A new feature recognition approach is proposed based on the analysis of aircraft integral panels' geometry and machining characteristics.In this approach,the aircraft integral panel is divided into a number of local machining domains.The machining domains are extracted and recognized first by finding the principal face of machining domain and extracting the sides around the principal face.Then the machining domains are divided into various features in terms of the face type.The main sections of the proposed method are presented including the definition,classification and structure of machining domain,the relationship between machining domain and principal face loop,the rules of machining domains recognition,and the algorithm of machining feature recognition.In addition,a robotic feature recognition module is developed for aircraft integral panels and tested with several panels.Test results show that the strategy presented is robust and valid.Features extracted can be post processed and linked to various downstream applications.The approach is able to solve the difficulties in recognizing the aircraft integral panel's features and automatic obtaining the machining zone in NC programming,and can be used to further develop the automatic programming of NC machining.
文摘To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the practical slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created according to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blank. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels.
基金supported by National Science and Technology Major Project (No.2012ZX04010051)
文摘In order to enhance the NC programming efficiency and quality of aircraft structural parts (ASPs), an intelligent NC programming pattern driven by process schemes is presented. In this pattern, the NC machining cell is the minimal organizational structure in the technological process, consisting of an operation machining volume cell, and the type and parameters of the machining operation. After the machining cell construction, the final NC program can be easily obtained in a CAD/CAM system by instantiating the machining operation for each machining cell. Accordingly, how to automatically establish the machining cells is a key issue in intelligent NC program- ming. On the basis of the NC machining craft of ASP, the paper aims to make an in-depth research on this issue. Firstly, some new terms about the residual volume and the machinable volume are defined, and then, the technological process is modeled with a process scheme. Secondly, the approach to building the machining cells is introduced, in which real-time complement machining is mainly considered to avoid interference and overcutting. Thirdly, the implementing algorithm is designed and applied to the Intelligent NC Programming System of ASP. Finally, the developed algorithm is validated through two case studies.
文摘镀锌高强钢因具有高强度、耐腐蚀以及延展性优良等特点被应用于汽车构件领域,在实现减重的同时,提高汽车安全性能。电阻点焊作为材料连接的重要技术之一,因具有焊接过程简单、热影响区小、焊接变形与应力小及焊接速度快等优点,被广泛应用于连接镀锌高强汽车用钢。但在焊接过程中锌镀层会在电阻热的作用下熔化并渗入至焊点内部,从而在焊接接头形成液态金属脆化裂纹(Liquid metal embrittlement cracks, LME),液态金属脆化裂纹会使焊接接头在拉伸过程中发生脆性断裂,严重恶化焊接接头的力学性能。从液态金属脆化裂纹形成机理、表征手段和母材显微组织的影响等方面详细总结了国内外在此方面的研究,并归纳出改善镀锌高强钢焊接接头液态金属脆化裂纹的措施,为后续的研究工作提供一定的参考与借鉴。