针对图像重建的问题,提出了一种基于统计量的加权函数图像重建方法。考虑到退化图像不仅含有高斯噪声,且含有拉普拉斯噪声,利用最大似然估计的思想估计高斯噪声和拉普拉斯噪声的方差构造基于统计量的高斯和拉普拉斯权重函数;由于在图像...针对图像重建的问题,提出了一种基于统计量的加权函数图像重建方法。考虑到退化图像不仅含有高斯噪声,且含有拉普拉斯噪声,利用最大似然估计的思想估计高斯噪声和拉普拉斯噪声的方差构造基于统计量的高斯和拉普拉斯权重函数;由于在图像重建过程中,噪声分布发生变化,整合L_1,L_2范数,设计了一种自适应加权函数;结合双边全变差(BTV)正则化算法,设计了一种自适应加权函数图像恢复方法。实验结果表明:相比基于L_1-L_2混合误差模型(HEM),方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别平均提高了约2.07 d B,0.02,对含有多种噪声的退化图像能够取得比较理想的结果。展开更多
文摘针对图像重建的问题,提出了一种基于统计量的加权函数图像重建方法。考虑到退化图像不仅含有高斯噪声,且含有拉普拉斯噪声,利用最大似然估计的思想估计高斯噪声和拉普拉斯噪声的方差构造基于统计量的高斯和拉普拉斯权重函数;由于在图像重建过程中,噪声分布发生变化,整合L_1,L_2范数,设计了一种自适应加权函数;结合双边全变差(BTV)正则化算法,设计了一种自适应加权函数图像恢复方法。实验结果表明:相比基于L_1-L_2混合误差模型(HEM),方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别平均提高了约2.07 d B,0.02,对含有多种噪声的退化图像能够取得比较理想的结果。