利用中国剩余定理研究了环Z_k上循环码及其对偶码,其中k=(multiply from (p_i) i=1 to s)~m,p_i表示不同的素数,m是一个正整数,并且p_i不能整除码长n,给出了一个非平凡循环自对偶码存在的充要条件,得到了中国积循环码最小距离的上界...利用中国剩余定理研究了环Z_k上循环码及其对偶码,其中k=(multiply from (p_i) i=1 to s)~m,p_i表示不同的素数,m是一个正整数,并且p_i不能整除码长n,给出了一个非平凡循环自对偶码存在的充要条件,得到了中国积循环码最小距离的上界,并且确定了中国积循环码的秩和最小生成集.展开更多
基金Supported by Doctoral Fund in Institutions of Higher Learning (20080359003)Key Project of Educational Office of Anhui Province on Natural Sciences (KJ2008A140)Natural Sciences Project of Hefei University (08KY036ZR)
文摘利用中国剩余定理研究了环Z_k上循环码及其对偶码,其中k=(multiply from (p_i) i=1 to s)~m,p_i表示不同的素数,m是一个正整数,并且p_i不能整除码长n,给出了一个非平凡循环自对偶码存在的充要条件,得到了中国积循环码最小距离的上界,并且确定了中国积循环码的秩和最小生成集.
基金Supported by NNSF of China(61672036)Technology Foundation for Selected Overseas Chinese Scholar+4 种基金Ministry of Personnel of China(05015133)the Open Research Fund of National Mobile Communications Research LaboratorySoutheast University(2015D11)Key projects of support program for outstanding young talents in Colleges and Universities(gxyqZD2016008)Natural Science Research Project of Higher Education of Anhui Province of China(KJ2015JD18)
基金Supported by National Natural Science Foundation of China(61672036)the Open Research Fund of Key Laboratory of Intelligent Computing and Signal Processing,Ministry of Education,Anhui University