急性呼吸窘迫综合症(ARDS)已成为一种严重的全球性健康问题,其病理生理机制仍然未被完全阐明,现有的治疗手段也十分有限。在ARDS的发展过程中,炎症瀑布的形成与线粒体功能障碍密切相关。多个因素可导致线粒体功能的紊乱,包括线粒体的质...急性呼吸窘迫综合症(ARDS)已成为一种严重的全球性健康问题,其病理生理机制仍然未被完全阐明,现有的治疗手段也十分有限。在ARDS的发展过程中,炎症瀑布的形成与线粒体功能障碍密切相关。多个因素可导致线粒体功能的紊乱,包括线粒体的质量控制失衡、活性氧的过度积累、钙离子超载及线粒体DNA的损伤等。这些损伤不仅会引起细胞死亡,还会促使炎症因子的释放,进一步加剧细胞及组织的炎症反应。然而,针对线粒体在ARDS发病机制中发挥的作用,系统性和深入的研究仍然较为稀缺。因此,深入探讨ARDS的发病机制,特别是线粒体相关的病理过程,将有助于发现新的治疗途径和策略,从而为改善ARDS患者的预后提供有效的干预措施。这项研究不仅能启发新的治疗思路,也有助于推动对ARDS的整体理解和管理。Acute respiratory distress syndrome (ARDS) has emerged as a significant global health concern, with its pathophysiological mechanisms still not fully elucidated and current therapeutic options being quite limited. Within the progression of ARDS, the formation of an inflammatory cascade is closely linked to mitochondrial dysfunction. Several factors can disrupt mitochondrial function, including imbalances in mitochondrial quality control, excessive accumulation of reactive oxygen species, calcium overload, and damage to mitochondrial DNA. These impairments not only lead to cellular apoptosis but also trigger the release of pro-inflammatory cytokines, further exacerbating the inflammatory response in both cells and tissues. Despite this, systematic and in-depth research exploring the role of mitochondria in the pathogenesis of ARDS remains relatively scarce. Therefore, a thorough investigation into the mechanisms underlying ARDS, particularly the mitochondrial-related pathological processes, could unveil novel therapeutic avenues and strategies aimed at improving patient outcomes. Such research would not only inspire new treatment concepts but also enhance the overall understanding and management of ARDS.展开更多
本文使用基于密度泛函理论(DFT)的超软赝势模拟法来对Li2ZnTi3O8、掺杂后的Li1.9Al0.1ZnTi3O8和Li1.9Ag0.1ZnTi3O8材料进行了电子结构与光学性质的研究。首先用CASTEP子程序对LZTO材料构建超晶胞并进行几何结构优化,并对优化后的电子结...本文使用基于密度泛函理论(DFT)的超软赝势模拟法来对Li2ZnTi3O8、掺杂后的Li1.9Al0.1ZnTi3O8和Li1.9Ag0.1ZnTi3O8材料进行了电子结构与光学性质的研究。首先用CASTEP子程序对LZTO材料构建超晶胞并进行几何结构优化,并对优化后的电子结构进行计算:包括能带结构、晶格常数、各原子的分波态密度以及总体态密度等。结果表明,LZTO晶格常数为a = b = c = 8.009 Å,Li1.9Al0.1ZnTi3O8晶格常数a = b = c = 8.837 Å,Li1.9Ag0.1ZnTi3O8晶格常数为a = b = c = 8.959 Å,与实验值接近。通过能带结构和态密度图得到Li2ZnTi3O8是一种直接带隙半导体材料,掺杂后电子的能量范围变窄,主要来自于Li、Ag、Zn和Al元素的贡献。最后计算和分析了LZTO的光学性质(光学吸收光谱),以期为锂离子电池电极材料的设计与优化提供理论指导。展开更多
文摘急性呼吸窘迫综合症(ARDS)已成为一种严重的全球性健康问题,其病理生理机制仍然未被完全阐明,现有的治疗手段也十分有限。在ARDS的发展过程中,炎症瀑布的形成与线粒体功能障碍密切相关。多个因素可导致线粒体功能的紊乱,包括线粒体的质量控制失衡、活性氧的过度积累、钙离子超载及线粒体DNA的损伤等。这些损伤不仅会引起细胞死亡,还会促使炎症因子的释放,进一步加剧细胞及组织的炎症反应。然而,针对线粒体在ARDS发病机制中发挥的作用,系统性和深入的研究仍然较为稀缺。因此,深入探讨ARDS的发病机制,特别是线粒体相关的病理过程,将有助于发现新的治疗途径和策略,从而为改善ARDS患者的预后提供有效的干预措施。这项研究不仅能启发新的治疗思路,也有助于推动对ARDS的整体理解和管理。Acute respiratory distress syndrome (ARDS) has emerged as a significant global health concern, with its pathophysiological mechanisms still not fully elucidated and current therapeutic options being quite limited. Within the progression of ARDS, the formation of an inflammatory cascade is closely linked to mitochondrial dysfunction. Several factors can disrupt mitochondrial function, including imbalances in mitochondrial quality control, excessive accumulation of reactive oxygen species, calcium overload, and damage to mitochondrial DNA. These impairments not only lead to cellular apoptosis but also trigger the release of pro-inflammatory cytokines, further exacerbating the inflammatory response in both cells and tissues. Despite this, systematic and in-depth research exploring the role of mitochondria in the pathogenesis of ARDS remains relatively scarce. Therefore, a thorough investigation into the mechanisms underlying ARDS, particularly the mitochondrial-related pathological processes, could unveil novel therapeutic avenues and strategies aimed at improving patient outcomes. Such research would not only inspire new treatment concepts but also enhance the overall understanding and management of ARDS.
文摘本文使用基于密度泛函理论(DFT)的超软赝势模拟法来对Li2ZnTi3O8、掺杂后的Li1.9Al0.1ZnTi3O8和Li1.9Ag0.1ZnTi3O8材料进行了电子结构与光学性质的研究。首先用CASTEP子程序对LZTO材料构建超晶胞并进行几何结构优化,并对优化后的电子结构进行计算:包括能带结构、晶格常数、各原子的分波态密度以及总体态密度等。结果表明,LZTO晶格常数为a = b = c = 8.009 Å,Li1.9Al0.1ZnTi3O8晶格常数a = b = c = 8.837 Å,Li1.9Ag0.1ZnTi3O8晶格常数为a = b = c = 8.959 Å,与实验值接近。通过能带结构和态密度图得到Li2ZnTi3O8是一种直接带隙半导体材料,掺杂后电子的能量范围变窄,主要来自于Li、Ag、Zn和Al元素的贡献。最后计算和分析了LZTO的光学性质(光学吸收光谱),以期为锂离子电池电极材料的设计与优化提供理论指导。