期刊文献+

An Analysis of the Evolution of Online Public Opinion on Public Health Emergencies by Combining CNN-BiLSTM + Attention and LDA

An Analysis of the Evolution of Online Public Opinion on Public Health Emergencies by Combining CNN-BiLSTM + Attention and LDA
在线阅读 下载PDF
导出
摘要 In this paper, the Foxconn epidemic event in Zhengzhou was taken as an example to analyze the evolution of online public opinion on public health emergencies. In order to improve the performance of online public opinion analysis, based on the life cycle theory and LDA theory, the emotional changes of Internet users in four stages of the Foxconn incident centered on the evolution of inscription were divided. The emotions of netizen speech at different stages are analyzed based on CNN-BiLSTM + Attention model, which uses Convolutional Neural Network (CNN) to extract local features. Bi-directional Long Short-Term Memory (BiLSTM) is used to efficiently extract contextual semantic features and long distance dependencies, and then combined with attention mechanism to add emotional features. Finally, Softmax classifier realizes text emotion prediction. The experimental results show that: compared with TextCNN, BiLSTM, BiLSTM + Attenion, CNN-BiLSTM model, the emotion classification model has better effects in the accuracy rate, accuracy rate, recall rate and F value. By analyzing the emotional distribution and evolution trend of public opinion under “text topic”, the paper accurately deconstructs the development characteristics of public opinion in public health emergencies, in order to provide reference for relevant departments to deal with public opinion in public health emergencies. . In this paper, the Foxconn epidemic event in Zhengzhou was taken as an example to analyze the evolution of online public opinion on public health emergencies. In order to improve the performance of online public opinion analysis, based on the life cycle theory and LDA theory, the emotional changes of Internet users in four stages of the Foxconn incident centered on the evolution of inscription were divided. The emotions of netizen speech at different stages are analyzed based on CNN-BiLSTM + Attention model, which uses Convolutional Neural Network (CNN) to extract local features. Bi-directional Long Short-Term Memory (BiLSTM) is used to efficiently extract contextual semantic features and long distance dependencies, and then combined with attention mechanism to add emotional features. Finally, Softmax classifier realizes text emotion prediction. The experimental results show that: compared with TextCNN, BiLSTM, BiLSTM + Attenion, CNN-BiLSTM model, the emotion classification model has better effects in the accuracy rate, accuracy rate, recall rate and F value. By analyzing the emotional distribution and evolution trend of public opinion under “text topic”, the paper accurately deconstructs the development characteristics of public opinion in public health emergencies, in order to provide reference for relevant departments to deal with public opinion in public health emergencies. .
作者 Hanlu Lei Hu Wang Linli Wang Yuhang Dong Jingjie Cheng Kui Cai Hanlu Lei;Hu Wang;Linli Wang;Yuhang Dong;Jingjie Cheng;Kui Cai(School of Management, Wuhan University of Technology, Wuhan, China;Wuhan Huaxia University of Technology, Wuhan, China)
出处 《Journal of Computer and Communications》 2023年第4期190-199,共10页 电脑和通信(英文)
关键词 Public Health Emergencies Emotional Evolution CNN-BiLSTM Attention Mechanism LDA Public Health Emergencies Emotional Evolution CNN-BiLSTM Attention Mechanism LDA
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部