摘要
In this paper, a two level finite difference scheme of Crank-Nicholson type is constructed and used to numerically investigate nonlinear temperature distribution in biological tissues described by bioheat transfer equation of Pennes’ type. For the equation under consideration, the thermal conductivity is either depth-dependent or tem-perature-dependent, while blood perfusion is temperature-dependent. In both cases of depth- dependent and temperature-dependent thermal conductivity, it is shown that blood perfusion decreases the temperature of the living tissue. Our numerical simulations show that neither the localization nor the magnitude of peak tempera-ture is affected by surface temperature;however, the width of peak temperature increases with surface temperature.
In this paper, a two level finite difference scheme of Crank-Nicholson type is constructed and used to numerically investigate nonlinear temperature distribution in biological tissues described by bioheat transfer equation of Pennes’ type. For the equation under consideration, the thermal conductivity is either depth-dependent or tem-perature-dependent, while blood perfusion is temperature-dependent. In both cases of depth- dependent and temperature-dependent thermal conductivity, it is shown that blood perfusion decreases the temperature of the living tissue. Our numerical simulations show that neither the localization nor the magnitude of peak tempera-ture is affected by surface temperature;however, the width of peak temperature increases with surface temperature.