期刊文献+

Mechanism and evolution of multidomain aminoacyl-tRNA synthetases revealed by their inhibition by analogues of a reaction intermediate, and by properties of truncated forms

Mechanism and evolution of multidomain aminoacyl-tRNA synthetases revealed by their inhibition by analogues of a reaction intermediate, and by properties of truncated forms
在线阅读 下载PDF
导出
摘要 Many enzymes which catalyze the conversion of large substrates are made of several structural domains belonging to the same polypeptide chain. Transfer RNA (tRNA), one of the substrates of the multidomain aminoacyl-tRNA synthetases (aaRS), is an L-shaped molecule whose size in one dimension is similar to that of its cognate aaRS. Crystallographic structures of aaRS/tRNA complexes show that these enzymes use several of their structural domains to interact with their cognate tRNA. This mini review discusses first some aspects of the evolution and of the flexibility of the pentadomain bacterial glutamyl-tRNA synthetase (GluRS) revealed by kinetic and interaction studies of complementary truncated forms, and then illustrates how stable analogues of aminoacyl-AMP intermediates have been used to probe conformational changes in the active sites of Escherichia coli GluRS and of the nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) of Pseudomonas aeruginosa. Many enzymes which catalyze the conversion of large substrates are made of several structural domains belonging to the same polypeptide chain. Transfer RNA (tRNA), one of the substrates of the multidomain aminoacyl-tRNA synthetases (aaRS), is an L-shaped molecule whose size in one dimension is similar to that of its cognate aaRS. Crystallographic structures of aaRS/tRNA complexes show that these enzymes use several of their structural domains to interact with their cognate tRNA. This mini review discusses first some aspects of the evolution and of the flexibility of the pentadomain bacterial glutamyl-tRNA synthetase (GluRS) revealed by kinetic and interaction studies of complementary truncated forms, and then illustrates how stable analogues of aminoacyl-AMP intermediates have been used to probe conformational changes in the active sites of Escherichia coli GluRS and of the nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) of Pseudomonas aeruginosa.
出处 《Journal of Biomedical Science and Engineering》 2013年第10期943-946,共4页 生物医学工程(英文)
关键词 Multidomain ENZYMES TRNA AMINOACYL-TRNA SYNTHETASES Truncated ENZYMES Steady-State Kinetics Inhibitors MECHANISM EVOLUTION Multidomain Enzymes tRNA Aminoacyl-tRNA Synthetases Truncated Enzymes Steady-State Kinetics Inhibitors Mechanism Evolution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部