期刊文献+

Efficient Production of δ-Guaiene, an Aroma Sesquiterpene Compound Accumulated in Agarwood, by Mevalonate Pathway-Engineered Escherichia coli Cells

Efficient Production of δ-Guaiene, an Aroma Sesquiterpene Compound Accumulated in Agarwood, by Mevalonate Pathway-Engineered Escherichia coli Cells
在线阅读 下载PDF
导出
摘要 Mevalonate pathway for isoprenoid biosynthesis was constructed in Escherichia coli cells by the transformation with a gene cluster isolated from Streptomyces sp., and farnesyl diphosphate synthase and δ-guaiene synthase genes were coexpressed in this strain. This transformant was capable of liberating an appreciable amount of δ-guaiene, an aroma sesquiterpene compound accumulated in agarwood, and its concentration was elevated to more than 30 μg/ml culture by the incubation with mevalonolactone as an isoprene precursor in a nutrient-enriched Terrific broth. Coexpression of type 1 isopentenyl diphosphate isomerase plus acetoacetyl-CoA ligase genes also enhanced δ-guaiene production, and the concentration of the compound was approximately 38 - 42 μg/ml culture in the presence of mevalonolactone or lithium acetoacetate. These results clearly indicate that mevalonate pathway-engineered E. coli cells showed an appreciable δ-guaiene producing activity in the en- riched medium in the presence of appropriate isoprene precursors. Mevalonate pathway for isoprenoid biosynthesis was constructed in Escherichia coli cells by the transformation with a gene cluster isolated from Streptomyces sp., and farnesyl diphosphate synthase and δ-guaiene synthase genes were coexpressed in this strain. This transformant was capable of liberating an appreciable amount of δ-guaiene, an aroma sesquiterpene compound accumulated in agarwood, and its concentration was elevated to more than 30 μg/ml culture by the incubation with mevalonolactone as an isoprene precursor in a nutrient-enriched Terrific broth. Coexpression of type 1 isopentenyl diphosphate isomerase plus acetoacetyl-CoA ligase genes also enhanced δ-guaiene production, and the concentration of the compound was approximately 38 - 42 μg/ml culture in the presence of mevalonolactone or lithium acetoacetate. These results clearly indicate that mevalonate pathway-engineered E. coli cells showed an appreciable δ-guaiene producing activity in the en- riched medium in the presence of appropriate isoprene precursors.
作者 Fumiya Kurosaki Takahiro Kato Norihiko Misawa Futoshi Taura Fumiya Kurosaki;Takahiro Kato;Norihiko Misawa;Futoshi Taura(Laboratory of Medicinal Bioresources, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan;Laboratory for Plant Genetic Function Science, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectual University, Nonoichi, Japan)
出处 《Advances in Bioscience and Biotechnology》 2016年第11期435-445,共11页 生命科学与技术进展(英文)
关键词 Engineered Escherichia coli δ-Guaiene Production ISOPRENOIDS Mevalonate Pathway Secondary Metabolism SESQUITERPENE Engineered Escherichia coli δ-Guaiene Production Isoprenoids Mevalonate Pathway Secondary Metabolism Sesquiterpene
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部