摘要
The paper presents some examples revealing the uncertainty and absolute certainty principles in kinetics of objects formation that are different in their physical nature and in space scales: sub-stances of microcosm, nanoparticles and mesostructures, astrophysical and cosmological objects. Under the proposed kinetic approach, the uncertainty principle covers a wider spectrum of processes of approaching to equilibrium and object formation, than the absolute certainty principle. It refers, in particular, to nano-range-of-problems and mesoscopics as well as to cosmology. Both principles predict formation of objects that are not well-known or, at least, well-described so far. Among these are neutron-rich super-heavy and giant nuclei, biologic and organic-silicon mesoobjects, cosmological objects with the sizes considerably exceeding the size of a light sphere.
The paper presents some examples revealing the uncertainty and absolute certainty principles in kinetics of objects formation that are different in their physical nature and in space scales: sub-stances of microcosm, nanoparticles and mesostructures, astrophysical and cosmological objects. Under the proposed kinetic approach, the uncertainty principle covers a wider spectrum of processes of approaching to equilibrium and object formation, than the absolute certainty principle. It refers, in particular, to nano-range-of-problems and mesoscopics as well as to cosmology. Both principles predict formation of objects that are not well-known or, at least, well-described so far. Among these are neutron-rich super-heavy and giant nuclei, biologic and organic-silicon mesoobjects, cosmological objects with the sizes considerably exceeding the size of a light sphere.