期刊文献+

Dynamical Behaviors of a Modified Leslie-Gower Predator-Prey System with Fear Effect and Prey Refuge

Dynamical Behaviors of a Modified Leslie-Gower Predator-Prey System with Fear Effect and Prey Refuge
在线阅读 下载PDF
导出
摘要 In this paper, the dynamical behaviors of a modified Leslie-Gower predator-prey model incorporating fear effect and prey refuge are investigated. We delve into the construction of the model and its biological significance, with preliminary results encompassing positivity, boundedness, and persistence. The stability of the system’s boundary and positive equilibrium points is proven by calculating the real part of the eigenvalues of the Jacobian matrix. At the positive equilibrium point, we demonstrate that the system’s unique positive equilibrium is globally asymptotically stable by using the Dulac criterion. Furthermore, at this equilibrium point, we employ the Implicit Function Theorem to discuss how fear effects and prey refuges influence the population densities of both prey and predators. Finally, numerical simulations are conducted to validate the above-mentioned conclusions and explored the impact of Predator-taxis sensitivity αon dynamics of the system. In this paper, the dynamical behaviors of a modified Leslie-Gower predator-prey model incorporating fear effect and prey refuge are investigated. We delve into the construction of the model and its biological significance, with preliminary results encompassing positivity, boundedness, and persistence. The stability of the system’s boundary and positive equilibrium points is proven by calculating the real part of the eigenvalues of the Jacobian matrix. At the positive equilibrium point, we demonstrate that the system’s unique positive equilibrium is globally asymptotically stable by using the Dulac criterion. Furthermore, at this equilibrium point, we employ the Implicit Function Theorem to discuss how fear effects and prey refuges influence the population densities of both prey and predators. Finally, numerical simulations are conducted to validate the above-mentioned conclusions and explored the impact of Predator-taxis sensitivity αon dynamics of the system.
作者 Ke Yuan Ke Yuan(School of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian, China)
出处 《Open Journal of Modelling and Simulation》 2024年第4期184-202,共19页 建模与仿真(英文)
关键词 Fear Effect Prey Refuge Predator-Taxis Sensitivity Population Density Stability Fear Effect Prey Refuge Predator-Taxis Sensitivity Population Density Stability
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部