摘要
Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of Lecher’s transmission lines σ and atomic number Z is constant. It was calculated that this electromechanical constant is 8.27756, and we call it structural constant. This constant builds the fine-structure constant 1/α = 137.036, and with permeability μ, permittivity ε and elementary charge e builds Plank’s constant h. This suggests the electromagnetic character of Planck’s constant. The relations of energy, frequency, wavelength and momentum of electromagnetic wave in an atom are also derived. Finally, an equation, similar to Schrodinger’s equation, was derived, with a clear meaning of the wave function, which represents the electric or magnetic field strength of the observed electromagnetic wave.
Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of Lecher’s transmission lines σ and atomic number Z is constant. It was calculated that this electromechanical constant is 8.27756, and we call it structural constant. This constant builds the fine-structure constant 1/α = 137.036, and with permeability μ, permittivity ε and elementary charge e builds Plank’s constant h. This suggests the electromagnetic character of Planck’s constant. The relations of energy, frequency, wavelength and momentum of electromagnetic wave in an atom are also derived. Finally, an equation, similar to Schrodinger’s equation, was derived, with a clear meaning of the wave function, which represents the electric or magnetic field strength of the observed electromagnetic wave.