期刊文献+

Two-Step Asymmetric Perfectly Matched Layer Model for High-Order Spatial FDTD Solver of 2D Maxwell’s Equations

Two-Step Asymmetric Perfectly Matched Layer Model for High-Order Spatial FDTD Solver of 2D Maxwell’s Equations
在线阅读 下载PDF
导出
摘要 We implemented a two-step Asymmetric Perfectly Matched Layer (APML) model in High-Order Finite Difference Time Domain (FDTD) algorithm for solving two-dimensional Maxwell’s equations. Initially, we applied the APML method to the standard second-order FDTD algorithm to derive a two-step time-staggered APML (APML-2SS) and a two-step time-centered APML (APML-2SC) formulation for these equations, afterwards, we extended these formulations in high-order FDTD algorithm in order to derive a APML high-order FDTD (APML-HOFDTD) formulation for our Maxwell’s equations. To examine the performance and check out the accuracy of APML model, we conducted a numerical study using a 2D fluid where the three derived formulations were to analyze selected phenomena in terahertz radiation production by the filamentation of two femtosecond laser beams in air plasma. Numerical results illustrated that the two-step APML model is sufficiently accurate for solving our 2D Maxwell’s equations in high-order FDTD discretization and it demonstrated a great performance in studying the THz radiation production. We implemented a two-step Asymmetric Perfectly Matched Layer (APML) model in High-Order Finite Difference Time Domain (FDTD) algorithm for solving two-dimensional Maxwell’s equations. Initially, we applied the APML method to the standard second-order FDTD algorithm to derive a two-step time-staggered APML (APML-2SS) and a two-step time-centered APML (APML-2SC) formulation for these equations, afterwards, we extended these formulations in high-order FDTD algorithm in order to derive a APML high-order FDTD (APML-HOFDTD) formulation for our Maxwell’s equations. To examine the performance and check out the accuracy of APML model, we conducted a numerical study using a 2D fluid where the three derived formulations were to analyze selected phenomena in terahertz radiation production by the filamentation of two femtosecond laser beams in air plasma. Numerical results illustrated that the two-step APML model is sufficiently accurate for solving our 2D Maxwell’s equations in high-order FDTD discretization and it demonstrated a great performance in studying the THz radiation production.
作者 Abdelrahman Mahdy Abdelrahman Mahdy(Department of Physical Sciences, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia)
出处 《Journal of Applied Mathematics and Physics》 2025年第2期553-566,共14页 应用数学与应用物理(英文)
关键词 Perfectly Matched Layer The Finite-Difference-Time-Domain Terahertz Radiation Production Filamentation of Femtosecond Laser Maxwell’s Equations Solver Perfectly Matched Layer The Finite-Difference-Time-Domain Terahertz Radiation Production Filamentation of Femtosecond Laser Maxwell’s Equations Solver
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部