期刊文献+

Numerical Simulation for the Efficiency of the Produced Terahertz Radiation by Two Femtosecond Laser Pulses: Above-Threshold-Ionization

Numerical Simulation for the Efficiency of the Produced Terahertz Radiation by Two Femtosecond Laser Pulses: Above-Threshold-Ionization
在线阅读 下载PDF
导出
摘要 The tunneling ionization (TI) is the most dominated ionization process in the production of terahertz radiation by two femtosecond lasers, although its validity above the ionization threshold of some gases is uncertain. In the present research, we employ a 1D fluid code to simulate the efficiency of the produced terahertz radiation by two femtosecond laser beams in air plasma. Two ionization models in the context of the TI process which are the Ammosov-Delone-Krainov (ADK) for noble gases and its developed molecular ADK (MO-ADK) model for molecular gases are intrinsically used to conduct this study. The main target of the present research is to examine the validity of these models Above-Threshold-Ionization (ATI) of these gases. For this purpose, we simulated the ionization rate and the power spectrum of the produced radiation, in addition we numerically evaluated the efficiency of the produced radiation as function of the input beams intensity at particular energy fraction factor, relative phase and initial pulse duration of these beams. These calculations conducted for a selected noble gas at varying energy levels and a chosen molecular air plasma gas at different quantum numbers. Numerical results near and above the ionization threshold of the selected gases have clarified that the ADK and MO-ADK model are successful valid to study the efficiency of the produced THz radiation at low energy levels and small quantum numbers of the selected gases, meanwhile, with any further increase in the energy level and the quantum number values of these gases, both of the ADK and MO-ADK are failed to correctly analyze the efficiency process and estimate its fundamental parameters. The tunneling ionization (TI) is the most dominated ionization process in the production of terahertz radiation by two femtosecond lasers, although its validity above the ionization threshold of some gases is uncertain. In the present research, we employ a 1D fluid code to simulate the efficiency of the produced terahertz radiation by two femtosecond laser beams in air plasma. Two ionization models in the context of the TI process which are the Ammosov-Delone-Krainov (ADK) for noble gases and its developed molecular ADK (MO-ADK) model for molecular gases are intrinsically used to conduct this study. The main target of the present research is to examine the validity of these models Above-Threshold-Ionization (ATI) of these gases. For this purpose, we simulated the ionization rate and the power spectrum of the produced radiation, in addition we numerically evaluated the efficiency of the produced radiation as function of the input beams intensity at particular energy fraction factor, relative phase and initial pulse duration of these beams. These calculations conducted for a selected noble gas at varying energy levels and a chosen molecular air plasma gas at different quantum numbers. Numerical results near and above the ionization threshold of the selected gases have clarified that the ADK and MO-ADK model are successful valid to study the efficiency of the produced THz radiation at low energy levels and small quantum numbers of the selected gases, meanwhile, with any further increase in the energy level and the quantum number values of these gases, both of the ADK and MO-ADK are failed to correctly analyze the efficiency process and estimate its fundamental parameters.
作者 Abdelrahman Mahdy Abdelrahman Mahdy(Physics Department, College of Science, Jazan University, Jazan 45142, Saudi Arabia)
机构地区 Physics Department
出处 《Journal of Applied Mathematics and Physics》 2023年第10期2997-3008,共12页 应用数学与应用物理(英文)
关键词 Terahertz Radiation Production Femtosecond Laser Computational Physics Terahertz Radiation Production Femtosecond Laser Computational Physics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部