摘要
Increased market competition means that quality, cost and delivery time are crucial elements of modern production techniques. Taguchi’s robust design is the most powerful method available for reducing product cost, improving quality, and simultaneously reducing development time. Robust design aims to reduce the impact of noise on the product or process quality and leads to greater customer satisfaction and higher operational performance. The objective of robust design is to minimize the total quality loss in products or processes. The PQL model proposed by this paper simultaneously optimizes the static and dynamic problems by minimizing the total quality loss. Using the proposed PQL model and steps for optimization, the method addresses complex parameter design, which varies with the properties and objectives of the experimental data, to improve the product quality. The example of an electron beam surface hardening process is provided to demonstrate the implementation and usefulness of the proposed method.
Increased market competition means that quality, cost and delivery time are crucial elements of modern production techniques. Taguchi’s robust design is the most powerful method available for reducing product cost, improving quality, and simultaneously reducing development time. Robust design aims to reduce the impact of noise on the product or process quality and leads to greater customer satisfaction and higher operational performance. The objective of robust design is to minimize the total quality loss in products or processes. The PQL model proposed by this paper simultaneously optimizes the static and dynamic problems by minimizing the total quality loss. Using the proposed PQL model and steps for optimization, the method addresses complex parameter design, which varies with the properties and objectives of the experimental data, to improve the product quality. The example of an electron beam surface hardening process is provided to demonstrate the implementation and usefulness of the proposed method.