期刊文献+

Incorporating the Multinomial Logistic Regression in Vehicle Crash Severity Modeling: A Detailed Overview

Incorporating the Multinomial Logistic Regression in Vehicle Crash Severity Modeling: A Detailed Overview
在线阅读 下载PDF
导出
摘要 Multinomial logistic regression (MNL) is an attractive statistical approach in modeling the vehicle crash severity as it does not require the assumption of normality, linearity, or homoscedasticity compared to other approaches, such as the discriminant analysis which requires these assumptions to be met. Moreover, it produces sound estimates by changing the probability range between 0.0 and 1.0 to log odds ranging from negative infinity to positive infinity, as it applies transformation of the dependent variable to a continuous variable. The estimates are asymptotically consistent with the requirements of the nonlinear regression process. The results of MNL can be interpreted by both the regression coefficient estimates and/or the odd ratios (the exponentiated coefficients) as well. In addition, the MNL can be used to improve the fitted model by comparing the full model that includes all predictors to a chosen restricted model by excluding the non-significant predictors. As such, this paper presents a detailed step by step overview of incorporating the MNL in crash severity modeling, using vehicle crash data of the Interstate I70 in the State of Missouri, USA for the years (2013-2015). Multinomial logistic regression (MNL) is an attractive statistical approach in modeling the vehicle crash severity as it does not require the assumption of normality, linearity, or homoscedasticity compared to other approaches, such as the discriminant analysis which requires these assumptions to be met. Moreover, it produces sound estimates by changing the probability range between 0.0 and 1.0 to log odds ranging from negative infinity to positive infinity, as it applies transformation of the dependent variable to a continuous variable. The estimates are asymptotically consistent with the requirements of the nonlinear regression process. The results of MNL can be interpreted by both the regression coefficient estimates and/or the odd ratios (the exponentiated coefficients) as well. In addition, the MNL can be used to improve the fitted model by comparing the full model that includes all predictors to a chosen restricted model by excluding the non-significant predictors. As such, this paper presents a detailed step by step overview of incorporating the MNL in crash severity modeling, using vehicle crash data of the Interstate I70 in the State of Missouri, USA for the years (2013-2015).
出处 《Journal of Transportation Technologies》 2017年第3期279-303,共25页 交通科技期刊(英文)
关键词 MULTINOMIAL Logistic Regression ODD Ratio The INDEPENDENCE of Irrelevant Alternatives The Hausman Specification TEST The Hosmer-Lemeshow TEST Pseudo R SQUARES Crash SEVERITY Models Multinomial Logistic Regression Odd Ratio The Independence of Irrelevant Alternatives The Hausman Specification Test The Hosmer-Lemeshow Test Pseudo R Squares Crash Severity Models
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部