期刊文献+

Numerical Analysis of Upwind Difference Schemes for Two-Dimensional First-Order Hyperbolic Equations with Variable Coefficients 被引量:1

Numerical Analysis of Upwind Difference Schemes for Two-Dimensional First-Order Hyperbolic Equations with Variable Coefficients
在线阅读 下载PDF
导出
摘要 In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis. In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.
作者 Yanmeng Sun Qing Yang Yanmeng Sun;Qing Yang(School of Mathematics and Statistics, Shandong Normal University, Jinan, China)
出处 《Engineering(科研)》 2021年第6期306-329,共24页 工程(英文)(1947-3931)
关键词 Two-Dimensional First-Order Hyperbolic Equation Variable Coefficients Upwind Difference Schemes Fourier Method Stability and Error Estimation Two-Dimensional First-Order Hyperbolic Equation Variable Coefficients Upwind Difference Schemes Fourier Method Stability and Error Estimation
  • 相关文献

参考文献1

二级参考文献10

  • 1Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods: Fundamentals in Single Domains [M]. Berlin: Springer-Verlag, 2006.
  • 2Shen J, Wang L L. Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations[J]. Comput Methods Appl Mech Engrg, 2007, 196(37/38/39/40): 3785-3797.
  • 3Gottlieb D, Hesthaven J S. Spectral methods for hyperbolic problems[J]. J Comput Appl Math, 2001, 128(1/2): 83-131.
  • 4Dendy J E. Two methods of Galerkin type achieving optimum L2 rates of convergence for first order hyperbolics [J]. SIAM J Numer Anal, 1974, 11(3): 637-653.
  • 5Wahlbin L B. A dissipative Galerkin method for the numerical solution of first-order hyperbolic equation [M]/ / Mathematical Aspects of Finite Elements in Partial Differential Equations. New York: Academic Press, 1974: 147-169.
  • 6Wahlbin L B. A dissipative Galerkin method applied to some quasilinear hyperbolic equations [J]. Revue Francaise D'automatique, Informatique, Recherche Operationnelle. Analyse Numerique, 1974, 8(2): 109-117.
  • 7Zhao J M, Liu L H. Spectral element method with adaptive artificial diffusion for solving the radiative transfer equation [J]. Numerical Heat Transfer: Part B, 2008, 53(6): 536-554.
  • 8Houston P, Schwab C, Stili E. Stabilized hp-finite element methods for first-order hyperbolic problems[J]. SIAM J Numer Anal, 2000, 37(5): 1618-1643.
  • 9Karniadakis G, Sherwin S J. Spectral/hp Element Methods for CFD [M]. New York: Oxford University Press, 2005.
  • 10杨征,张中强.一阶双曲方程的耗散谱tau方法及最优误差估计[J].丽水学院学报,2008,30(5):12-15. 被引量:2

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部