从阿基米德分牛问题得出的Pell方程的最小正整数解
The Smallest Positive Integer Solution of the Pell Equation Derived from Archimedes’s Cattle Problem
摘要
本文借助于数学软件Mathematica11.0用个人计算机求出了从阿基米德分牛问题得出的Pell方程的最小正整数解。
In this paper, with the help of the mathematical software Mathematica11.0, a personal computer is used to obtain the smallest positive integer solution of the Pell equation from Archimedes’s cattle problem.
出处
《应用数学进展》
2021年第8期2733-2738,共6页
Advances in Applied Mathematics
二级参考文献17
-
1杜德利U.基础数论[M].上海:上海教育出版社,1980.35-56.
-
2杜德利 U 周仲良译.基础数论[M].上海:上海科学技术出版社,1980..
-
3FRASER P M.Ptolemaic Alexandria[J].Oxford University Press,Oxford,1972.
-
4Williams H C,German R AcEamke C R.Solution of the cattle problem of Archimedes [J].Math of Computation, 1965(19):671-674.
-
5Nelson H G.A solution to Archimedes' cattle problem[J]. J.Recreational Math,1980-1981,13(3):162-176.
-
6Vardi L.Archimedes' Cattle Problem[J].Amer Math Monthly, 1998(105):305-319.
-
7Bell A H.The "Cattle Problem" by Archimedies 251 BC[J]. Amer Math Monthly,1895(2):140-141.
-
8KRUMBIEGEL B,AMTHOR A.Das Problema Bovinum des Archimedes [J].Historisch-literarische Abteilung der Zeitschrift fur Mathematik und Physik,1880(25):121-136,153-171.
-
9LENSTRA J R H W.On the calculation of regulators and class numbers of quadratic fields [J]. J Armitage (ed.),Journees Arithmetiques 1980, London Math Soc Lecture Note Ser. 56,Cambridge University Press, Cambridge,1982:123-150.
-
10NELSON H LA solution to Archimedes' cattle problem[J]. J Recreational Math,1980-1981,13(3):162-176.
共引文献4
-
1赵东方.运用Mathematica软件包求解2人矩阵对策[J].华中师范大学学报(自然科学版),2005,39(3):291-293. 被引量:9
-
2吴小明,杨观赐,赵伟科.Pell方程解的几个公式[J].湖南理工学院学报(自然科学版),2006,19(2):10-13. 被引量:2
-
3洪俊田,赵东方.运用Lingo软件包求解双矩阵对策的方法[J].华中师范大学学报(自然科学版),2006,40(3):325-330. 被引量:4
-
4曾令淮.利用Maple软件求解Pell方程的最小整数解[J].高师理科学刊,2014,34(1):24-26.
-
1张程.再谈分牛[J].环球慈善,2019(9):115-115.
-
2于志洪.“分牛”问题[J].今日中学生(中旬)(初二),2017,0(11):24-24.