期刊文献+

四色定理论证的关键 被引量:3

A Key to Proof of 4-Color Theorem
在线阅读 下载PDF
导出
摘要 一百多年来对"四色问题"的研究长期不得其解的关键在于:肯泊(A.Kempe)当年提出的"不可避免构形集"中一个国家(地域)具有五个邻国(邻域)的所谓"可约性"问题得不到解决。"《四色定理》论证"用数学归纳法,而"平面图的点着色方法"未用数学归纳法,两种方式论证"四色问题"都涉及到"一个(待着色)顶点有五个邻接顶点,已着有4种颜色,要将这4种颜色设法变成3种,把腾出来的1种颜色给该顶点着色。"———这就是四色定理论证的关键。再根据换色原理,用巧妙而深层次地换色办法,对这个关键进行更深刻地论述,其换(着)色最多六步就可以完成,进而更充实和完善了前述两文。 the crucial reason why the 4-color problem has not been solved for hundred years lies in a simplifying problem fails to be resolved. The simplifying problem posed by A.Kempe refers that in the unavoidable structures group, a so-called simplifying problem cannot be solved which happens in the case of that a country or region has five neighboring countries or regions. Mathematical induction was used to proof the 4-color theorem, while 'vertex-coloring on a planar graph' (to be issued) does not need to use induction. However both of the methods refer to a main point that a vertex to be colored has five adjacent vertices that are respectively colored 4 colors and the matter is how to free up one color from the four colors to color the vertex. This is also a key to proof the 4-color theorem. So this paper aims to further make the key clear according to the method of interchanging colors to complete the two papers written before. And the steps of interchanging colors are 6 steps at most.
出处 《航空计算技术》 2004年第1期38-41,44,共5页 Aeronautical Computing Technique
关键词 四色定理 不可避免构形集 平面图 点着色 换色法 可约性 4-color theorem unavoidable structures group simplifying problem planar graph vertex-coloring interchanging-colors.
  • 相关文献

参考文献5

  • 1耿素云.集合论与图论(离散数学第二分册)[M].北京:北京大学出版社,2000..
  • 2王朝瑞.图论(第二版)[M].北京:北京理工大学出版社,2000..
  • 3王俊邦 罗振声.趣味离散数学[M].北京:北京大学出版社,2000..
  • 4颜宪邦,屈姿朴.四色定理论证[J].航空计算技术,2003,33(2):55-60. 被引量:2
  • 5颜宪邦 屈姿朴.平面图的点着色方法[J].航空计算技术,2003,:95-98.

二级参考文献4

  • 1耿素云.集合论与图论(离散数学第二分册)[M].北京:北京大学出版社,2000..
  • 2王朝瑞.图论(第二版)[M].北京:北京理工大学出版社,2000..
  • 3王俊邦 罗振声.趣味离散数学[M].北京:北京大学出版社,2000..
  • 4李文林.数学史教程.A History of Mathematics[M].北京:高等教育出版社,施普林格出版社,2000..

共引文献1

同被引文献16

  • 1ADAMS R W,BRITTINGHAM J N,BURKE G J,et al.Numerical electromagnetics code-2 (NEC2),part Ⅰ:NEC program description theory[D].Livermore:Lawrence Livermore Laboratory,2005.
  • 2徐本顺,解恩泽.《数学猜想集》[M].湖南科学技术出版社,1999.2版.152-179.240.
  • 3Appe1kI, HakenW.Everyp1anarmapisfour-co1ourab1e[J].Bu11.Am.Math.soc., 1976,82:71 1-712.
  • 4罗莫《四色猜想几何求证方法》.http://www.chinava1ue.net/Gen-era1/B1og/2011-1-4/676249.2011.01.04.
  • 5刘国瑞.刘国华.《四色猜想的证明》中国科技论文在线,2006.01.23.
  • 6Kauffman, L .H.: On the map theorem, Disc. Math. 229, 1 71-184(2001 ).
  • 7Wi1son, R. A.: Graph, Co1oring and the Four-Co1or Theorem, Oxford University Press, Eng1and, 2001.
  • 8Charr, H., Kocay, W.:A heuristic for 4-co1oring a p1anar graph, J. Combin. Math. Combin.Comput.,46,97-1 12(2003).
  • 9王献芬,胡作玄.四色定理的三代证明[J].自然辩证法通讯,2010,32(4):42-48. 被引量:7
  • 10郭巍,郭应焕,郭振华,朱玉兰.地图染色定理的证明[J].前沿科学,2011,5(2):53-58. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部