摘要
以波传播的观点 ,将流动工况视为连续波与动力波相互作用在特定流动条件下的非线性解 ,尝试提出了两相流分析的一种新思路 .从一维气液两相流守恒方程出发 ,应用气液两相流漂移流模型 ,推导了空泡率双曲型守恒方程 ,用特征线法数值求解气液两相流空泡率分布的传播过程 ,对传播稳定性和流型转变进行讨论 .数值分析表明 ,低空泡率时发生流型转变的位置相对于两相流平均速度将向下游蔓延 ;而高空泡率时则相对地向上游蔓延 ;空泡率很高时空泡率分布传播过程中将不会出现流型转变 .计算表明 :流型转变起始点的空泡率为 0 2 7,空泡率达到 0 5 8时流型转变终止 ;
This paper presents a dynamic propagation view that the continuity wave and dynamic wave acting on each other results in the non linear solution under certain flow conditions. Based on the drift flux model and empiric formula, hyperbolic equation of one dimensional gas liquid two phase flow is deduced, wave theory approach is performed in detail by using characteristic curve method. The numerical analysis shows flow pattern transition location propagates downstream ward for lower void fraction while it moves upstream ward for higher void fraction. Flow pattern transition would not occur for very high void fraction. The calculations show that the inception of flow pattern transition is at the void fraction of 0.27 and the flow pattern transition stops at the void fraction of 0.58, which is in good agreement with experimental results in literatures.
出处
《中国科学院研究生院学报》
CAS
CSCD
2004年第3期322-327,共6页
Journal of the Graduate School of the Chinese Academy of Sciences
关键词
空泡率分布
气液两相流
流型转变
voidage distribution, gas liquid two phase flow, flow pattern transition