期刊文献+

拓扑半格中的Nash平衡定理 被引量:1

Nash Equilibria in Topological Semilattices
在线阅读 下载PDF
导出
摘要 基于Horvath关于序拓扑空间中所给出的拓扑半格的框架结构 ,利用拓扑半格中的不动点定理 ,给出了序拓扑空间中的n -非合作广义对策Nash平衡点的存在性定理。 Based on the results which were proved by Horvath in topological ordered spaces,using the fixed point theorem in topological semilattices,we prove the existence of Nash equilibrium points for n-person non-cooperative generic game in topological ordered spaces.
机构地区 贵州大学数学系
出处 《贵州大学学报(自然科学版)》 2004年第2期132-135,共4页 Journal of Guizhou University:Natural Sciences
关键词 拓扑半格 广义对策 NASH平衡点 topological semilattice non-cooperative generic game Nash equilibrium points
  • 相关文献

参考文献7

  • 1Xiang Shuwen, Xiang Shuhuang. Nash Equilibria in Toplogical Order Spaces[J]. Journal of Guizhou University(Natural Science) ,2001,18(Sep) :83 -87.
  • 2E. Klein, A. Thompson. Theory of correspondences[M]. Wiley, New York.
  • 3Horvath, C. D. and Linares Ciscar,J. V. Maximal Elements and Fixed point for Binary Relations On Topological Ordered Spaces [J]. Journal of Mathematical Economics, 1996,25:91 - 306.
  • 4JIANG JIA HE. Essential Components of the Set of Fixed Points of the Multivalued Mapping and Its Application to The Theory of Games[J]. Scientia Sinica, 1963,12:951 - 964.
  • 5J. P. Anbin, I. Ekland, Applied Nonlinear Analysis [ M ]. John wiley & Sons, 1984.
  • 6Wu Wen - Jun,Jiang Jia - He. Essential Equilibrium Points of n - person Non - cooperative game(I) [J]. Scientia sinica, 1962,11:1307 - 1322.Proc. Amer. Math. Soc,1995,123:1511 -1519.
  • 7江泽涵.拓扑学引论[M].上海科学技术出版社,1977..

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部