期刊文献+

电能质量扰动的专家概率分类器模型 被引量:6

EXPERT PROBABILITY CLASSIFICATION FOR POWER QUALITY DISTURBANCES
在线阅读 下载PDF
导出
摘要 电力系统以及部分用户均安装有监测装置,收集了大量的扰动数据,因此有必要研究出实用简单的、自动的扰动分类器,从而为进一步研究奠定基础。提出了电能质量扰动的专家概率分类器模型,用于常见电能质量扰动的分类。概率分类器基于数理统计规律,概念清楚、运算简单,引入专家反馈环节可以提高分类的准确性、鲁棒性,使得分类器具备一定的自适应能力。根据同一监测地点检测到的电能质量扰动样本,构建并测试了该分类器的可行性及性能,结果令人满意。 Power quality is a growing concern on the electric power systems. High power quality is required as a result of increase of sensitive electronic and computer-controlled load. When disturbances detected and collected, it is necessary to classify them. An expert based probability classification model is employed to investigate generic power quality disturbances. It is based on the statistical principle with the character of simple and low calculation cost. Improved accurateness and robustness are achieved by adding expert interference feedback to the model. The model has certain adaptive ability with expert feedback. The model is created and its feasibility and performance are evaluated through the field collected disturbance sample of the same site. The result shows much satisfying.
机构地区 清华大学电机系
出处 《电力系统自动化》 EI CSCD 北大核心 2004年第8期45-49,56,共6页 Automation of Electric Power Systems
关键词 电能质量扰动分类 概率分类器 专家反馈 power quality disturbances classification probability classification expert feedback
  • 相关文献

参考文献8

二级参考文献28

  • 1[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 2[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 3[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 4[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 5[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 6[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.
  • 7[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220.
  • 8[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232.
  • 9[9]Sweldens W. The Liftinging scheme: a custom-design construction of biorthogonal wavelets[J]. J. Appl. and Comput. Harmonic Analysis, 1996, 3(2):186-200.
  • 10[10]Daubechies I. Ten lectures on wavelets[M]. CBMS-NSF Regional Conf. series in Appl. Math., Philadelphia, PA, 1992, 61:277.

共引文献304

同被引文献69

引证文献6

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部