摘要
将时间分裂空间小波自适应方法应用于数值求解薛定谔方程(普朗克常数ε很小时).为了得到稳定且高精度的数值格式,采用随空间分辨率提高时间步长也自适应的逼近格式,并给出具体的数值例子.
The paper presents a time-splitting and wavelet based space-time adaptive method for numerical solution of Schrdinger equations (the Planck constant ε is small). The multiresolution structure of wavelet orthonormal bases provides an adaptive way to the local regularity of the solution. In order to gain the stability and precision of the numerical scheme, we introduce an approximate sheme that adapt the time steps to the spatial resolution. Furthermore, numerical tests are presented.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2004年第2期176-178,共3页
Journal of Jilin University:Science Edition
基金
国家973项目基金(批准号:G1998030600).