期刊文献+

时间分裂空间小波自适应方法在薛定谔方程中的应用

Application of time-splitting and wavelet based space-time adaptive method to solving Schrdinger equations
在线阅读 下载PDF
导出
摘要 将时间分裂空间小波自适应方法应用于数值求解薛定谔方程(普朗克常数ε很小时).为了得到稳定且高精度的数值格式,采用随空间分辨率提高时间步长也自适应的逼近格式,并给出具体的数值例子. The paper presents a time-splitting and wavelet based space-time adaptive method for numerical solution of Schrdinger equations (the Planck constant ε is small). The multiresolution structure of wavelet orthonormal bases provides an adaptive way to the local regularity of the solution. In order to gain the stability and precision of the numerical scheme, we introduce an approximate sheme that adapt the time steps to the spatial resolution. Furthermore, numerical tests are presented.
作者 张然 张凯
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2004年第2期176-178,共3页 Journal of Jilin University:Science Edition
基金 国家973项目基金(批准号:G1998030600).
关键词 时间分裂空间 小波自适应方法 薛定谔方程 逼近格式 Schrdinger equation splitting method wavelet
  • 相关文献

参考文献5

  • 1Berger M, Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations [J]. J Comput Phys, 1984, 53(3): 484-512.
  • 2Yserentant H. On the multi-level splitting of finite element spaces [J]. Numeri Math, 1986, 49: 379-412.
  • 3赫泉龄,关玉景.方向积分与多元非张量积小波的构造[J].吉林大学学报(理学版),2004,42(1):11-15. 被引量:2
  • 4Bacry E, Mallat S, Papanicolaou G. A wavelet based space-time adaptive numerical method for partial differential equations [J]. Math Mode Numeri Anal, 1992, 26(7): 793-812.
  • 5BAO Wei-zhu, SHI Jin, Markowich P A. On time-splitting spectral approximations for the Schrdinger equation in the semi-classical regime [J]. J Comput Phys, 2002, 175(2): 487-524.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部