期刊文献+

State Fusion Estimation for Multilevel Multisensor System

State Fusion Estimation for Multilevel Multisensor System
在线阅读 下载PDF
导出
摘要 Based on the single sensor Kalman filtering equations, this paper presents two-level and three-level optimal centralized and distributed estimation algorithms for hierarchical multisensor systems. The solution shows that when the correlated matrix, the mean of noise, the control input, and the measurement error are all zero, the result in this paper turns out to be the standard algorithm discussed. Simulation shows that the mean of noise, the control input, and the measurement error will not change the estimation covariance and the estimation covariance fluctuates greatly when the cross-correlated matrix is similar to the covariance of process noise. Based on the single sensor Kalman filtering equations, this paper presents two-level and three-level optimal centralized and distributed estimation algorithms for hierarchical multisensor systems. The solution shows that when the correlated matrix, the mean of noise, the control input, and the measurement error are all zero, the result in this paper turns out to be the standard algorithm discussed. Simulation shows that the mean of noise, the control input, and the measurement error will not change the estimation covariance and the estimation covariance fluctuates greatly when the cross-correlated matrix is similar to the covariance of process noise.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期77-83,89,共8页 系统工程与电子技术(英文版)
关键词 data fusion hierarchical estimation multilevel filtering correlated noise. data fusion, hierarchical estimation, multilevel filtering, correlated noise.
  • 相关文献

参考文献1

二级参考文献6

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部