期刊文献+

冲击波诱导甲烷热分解的化学与热力学非平衡流计算 被引量:1

Numerical Calculation for the Chemical and Thermodynamic Non-Equilibrium Flows of Shock-Induced Methane Decomposition
在线阅读 下载PDF
导出
摘要 为了研究冲击波诱导下甲烷气体的化学和热力学非平衡过程,首先利用冲击波间断关系和理想气体状态方程,计算了甲烷的冻结冲击波参数,然后以波后的压力和温度作为初始条件,作定压反应计算,由此获得波后非平衡区的温度和化学成分随时间变化的模拟结果.计算表明,当冲击波马赫数较大时,波后冲击波温度能较快地趋于平衡,甲烷热分解的比例迅速增大,产物中C2H2,H2,C2H4等稳定产物的含量显著增加.这一结果与甲烷冲击压缩实验中观察到的结果符合较好. To study the chemical reacting flows of shockinduced methane decomposition, firstly, frozen shock parameters were calculated using the discontinuity equations of normal shock waves. Secondly, chemical reactions at constant pressures were considered in the shock downstream. Then, the variation of temperature and chemical species with time were simulated. In the computation of nonequilibrium flows, a chemistry model involving 13 species with 40step reactions was used. The numerical results indicated that little methane was decomposed when shock Mach number was 7.5. With the increase of Mach numbers, the amount of decomposed methane and the molar fraction of some products such as H2, C2H4 and C2H2 remarkably increased in the reacting systems and the temperatures in the downstream of the shock fronts rapidly approached to the values of thermodynamic equilibrium in the systems. The computational results were in good agreement with the experimental results.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第5期891-895,共5页 Journal of Sichuan University(Natural Science Edition)
基金 中国工程物理研究院预研基金(421020102 05)
关键词 甲烷 冲击波 冻结流 非平衡 化学反应流 methane shock waves frozen flows non-equilibrium chemical reacting
  • 相关文献

参考文献8

  • 1唐敬友,谷岩,胡海波,彭其先,王贵朝,董庆东.冲击压缩下甲烷的状态参数实验研究[J].流体力学实验与测量,2001,15(4):30-35. 被引量:6
  • 2唐敬友,徐胜利.甲烷气体的冲击化学反应流研究[J].爆炸与冲击,2003,23(6):539-544. 被引量:1
  • 3唐敬友,岳鹏涛,徐胜利,谷岩,董庆东.电探针保护气体的优选原则[J].流体力学实验与测量,2003,17(1):28-31. 被引量:2
  • 4唐敬友,岳朋涛,谷岩,胡海波,徐胜利,董庆东.甲烷气体的冲击状态方程数值计算[J].空气动力学学报,2003,21(2):164-172. 被引量:3
  • 5Kiefer J H, Kumaran S S. Rate of CH4 dissociation over 2800 - 4300 K: The lower-pressure-limit rate constant[J ]. J Phys Chem, 1994, 97(2): 414-420.
  • 6Kozlov G I, Knorre V G. Single-pulse shock tube studies on the kinetics of the thermal decomposition of methane[J]. Combst Flame, 1962, 6(4): 253-263.
  • 7Marrone P V, Treater C E. Chemical relaxation with preferential dissociation from exited vibrational levels[J]. Phys Fluids,1963, 6(9) : 1215 - 1221.
  • 8Koffi-Kpante K, Zeitoun D, Labracherie L. Computation and experimental validation of N-CH-Ar mixture flows behind normal shock wave[J]. Shock Waves, 1997, (7) : 351 - 361.

二级参考文献22

  • 1谭华.金属的冲击波温度测量(Ⅰ)──高温计的标定和界面温度的确定[J].高压物理学报,1994,8(4):254-263. 被引量:26
  • 2徐锡申 张成箱 等.实验物态方程理论导引[M].科学出版社,1986..
  • 3王藩侯.分子势能函数和氩等离子体辐射不透明度研究.博士后研究工作报告[M].中国工程物理研究院流体物理研究所,..
  • 4MorrisonRT BoydRN 复旦大学化学系有机化学教研组 译.有机化学*上册[M].北京:科学出版社,1980.33-34.
  • 5JANAF Themochemical Tables [M]. Natl. Stand. Rd. Data, Ser. (U.S., Natl. Bur. Stand.) 1985, (14).
  • 6SHU C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws [R].ICASE Report: 97-65.
  • 7KOFFI-KPANTE K, ZEITOUN D, LABRACHERIE L. Computation and experimental validation of N2-CH4-Ar mixture flows behind normal shock wave [J]. Shock Waves, 1997, 7(6) : 351-361.
  • 8STEWART P H, SMITH G P, GOLDEN D M. The pressure and temperature dependence of methane decomposition [J]. Int.J. Chem. Kinet. 1989, 21(10): 923-945.
  • 9KIEFER J H, KUMARAN S S. Rate of CH4 dissociation over 2800-4300K: the low-pressure-limit rate constant [J].J.Phys. Chem., 1993, 97(2): 414-420.
  • 10SHUEN J-S, LIOU M-S, VAN LEER B. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry [J].J. Comput. Phys., 1990, 90: 371-395.

共引文献7

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部