期刊文献+

基于最小二乘支持向量机的软测量建模 被引量:102

Soft Sensor Modeling Based on Support Vector Machines
在线阅读 下载PDF
导出
摘要 软测量技术在工业过程控制中得到了广泛的应用,对保证产品质量和安全生产有很重要的作用。软测量技术的核心问题是建立优良的软测量数学模型。支持向量机是近几年发展起来的机器学习的新方法,它较好地解决了小样本、非线性、高维数、局部极小点等实际问题。本文研究了基于最小二乘支持向量机的软测量建模方法,并用交叉验证的方法进行支持向量机参数选择。将基于最小二乘支持向量机的软测量模型应用于轻柴油凝固点的预估。结果表明最小二乘支持向量机是软测量建模的一种非常有效的方法。 Soft sensor has been widely used in industrial process control. It makes an important role to improve the quality of product and assure safety in production. The core problem of soft sensor is to construct appropriate mathematic model. Support vector machine (SVM) is a novel machine learning method, which is powerful for the problem characterized by small sample, nonlinearity, high dimension and local minima, and has high generalization. In this paper, soft sensor modeling method based on Least Square SVM (LS SVM) is proposed, and cross validation method is used to select hyper-parameter of LS SVM model. Soft sensor model based on LS SVM is applied to predication of frozen point of light diesel oil. Effective result indicates that LS SVM is of potential application in soft sensor.
出处 《系统仿真学报》 CAS CSCD 2003年第10期1494-1496,共3页 Journal of System Simulation
基金 国家十五863项目(2001 AA413130)
关键词 最小二乘支持向量机 软测量 建模 交叉验证 support vector machine soft sensor modeling cross validation
  • 相关文献

参考文献9

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2288
  • 2徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,34(2):1-3. 被引量:50
  • 3于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 4Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69.
  • 5Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385.
  • 6Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition.
  • 7Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 9Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995.

二级参考文献26

共引文献2461

同被引文献785

引证文献102

二级引证文献682

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部