期刊文献+

一类脉冲积微分方程解的存在和稳定性

The Existence and Stability of the Solution of Impulsive Integro-differential Equations
原文传递
导出
摘要 通过对一类脉冲积微分方程的解迭代序列的构造,利用迭代分析方法和泛函空间理论,同时得到了其解的存在性、唯一性和稳定性. In this paper,one class of impulsive integro-differential equations are obtained by iterative analysis method and functional space theorem,structure its iterative sequence.At the same time,we obtained the Solution of the existence,uniqueness and stability.
作者 汪小梅 朱华
出处 《生物数学学报》 2015年第2期377-383,共7页 Journal of Biomathematics
关键词 脉冲 迭代分析 存在 稳定性 Impulsive Iterative analysis Existence Stability
  • 相关文献

参考文献7

  • 1张素平,蒋威.一类高维脉冲泛函微分方程周期解的存在性(英文)[J].生物数学学报,2014(1):17-22. 被引量:2
  • 2郭建敏,郭彩霞,康淑瑰.一类非线性分数阶奇异耦合系统正解的存在性[J].生物数学学报,2013,28(1):143-148. 被引量:6
  • 3Mengxing He,Anping Liu,Zhuoling Ou.Stability for large systems of partial functional differential equations: iterative analysis method[J]. Applied Mathematics and Computation . 2002 (2)
  • 4Mengxing He.Global Existence and Stability of Solutions for Reaction Diffusion Functional Differential Equations[J]. Journal of Mathematical Analysis and Applications . 1996 (3)
  • 5Guo Dajun,Liu Xinzhi.Extremal solutions of nonlinear impulsive integro-differential equations in Banach spaces. Journal of Mathematical . 1993
  • 6Guo D,Lakshmikantham V,Liu X.Nonlinear Integral Equations in Abstract Spaces. . 1996
  • 7Lakshmikantham V,Bainov DD,Simeonov PS.Theory of impulsive differential equations[]..1989

二级参考文献14

  • 1Kilbas A A, Srivastava H M, Trujillo J ,J. Theory and Applications of Fractional Differential Equa.tions[M],Elsevier B. V., Amsterdam, 2006.
  • 2Podlubny I. Fractional Differential Equations, in: Mathematics in Science and EngineeHng[M], 1999, 198,Academic Press, New York, London, Toronto.
  • 3Samko S G, Kilbas A A, Marichev O I. Fractional Integral And Derivatives(Theory and Applications)[M].Switzerland: Gordon and Breach, 1993.
  • 4Bai C Z, Fang J X. The existence of a positive solution for a singular couplcd system of a nonlinear fractionaldifferential equation[J]. Applied Mathematics and Computation, 2004, 35(3):611-621.
  • 5Su X. Boundary value problem for a coupled system of nonlinear fractional differential equditions[J].AppliedMathematics Letters, 2009,35(22): 64-69.
  • 6Bai Z B, LV H S. Positive solutions for boundary value problem of nonlinear fractional differential equation [J].Jom'nal of Mathematical Analysis and Application, 2005, 35(311):495-505.
  • 7Liang S, Zhang J. Positive solutions for boundary problems of nonlinear fractional differential equation[J].Nonlinear Analysis, 2009, 35(71):5545-5550.
  • 8Amini-Harandi A, Emani H. A fixed point theorem for contraction type maps in partially ordered metricspaces and application to ordinary differential cquations[J]. Nonlinear Analysis, 2010, 35(72):2238--2242.
  • 9Zhijun Zeng.Existence and multiplicity of positive periodic solutions for a class of higher-dimension functional differential equations with impulses[J].Computers and Mathematics with Applications.2009(10)
  • 10Na Zhang,Binxiang Dai,Xiangzheng Qian.Periodic solutions for a class of higher-dimension functional differential equations with impulses[J].Nonlinear Analysis.2006(3)

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部