期刊文献+

一种多层分类的入侵检测系统 被引量:1

A Multiple Classifier Intrusion Detection Systems
在线阅读 下载PDF
导出
摘要 信息安全是全球关注的重要话题。但Internet的复杂性、可访问性和开放性带来了日益增长的严重的信息系统安全的威胁。论文介绍了一种使用支持向量机和神经网络的入侵监测系统。主要思想是发现用以描述用户在系统上行为的模式与特征,用一系列相关的特征建立分类器去进行异常检测,希望能够实时地发现入侵。通过比较基于神经网络和支撑向量机的入侵检测系统,利用两者各自的优势,构造了一种新的入侵检测系统。 Information security is an issue of serious global concern.The complexity,accessibility,and openness of the Internet have served to increase the security risk of information systems tremendously.This paper describes a intrusion detection system using neural networks and support vector machines.The key ideas are to discover useful patterns or features that describe user behavior on a system,and use the set of relevant features to build classifiers that can recog-nize anomalies and known intrusions,hopefully in real time.We compare intrusion detection systems of neural networks based and support vector machine based,and build a new intrusion detection system using the advantages of both.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第26期24-27,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助(编号:60074025)
关键词 支持向量机 神经网络 特征提取 SVMs ,Neural Network,Feature Extract
  • 相关文献

参考文献12

  • 1张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3.[EB/OL].http ://kdd.ics.uci.edu/databases/kddcup99/task.html.,.
  • 4Debar H ,Becke M ,Siboni D.A Neural Network Component for an Intrusion Detection System[C].In:Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy. 1992.
  • 5Ghosh AK.Learning Program Behavior Profiles for Intrusion Detec- tion.USENIX, 1999.
  • 6Hochberg J,Jackson K,Stallings C et al.NADIR:An Automated Sys- tem For Detecting Networking Intrusion And Misuse[J].Computers And Security, 1993 ; 12 (3) :235-248.
  • 7Sobirey M ,Richter B,Konig M.The Intrusion Detection System Aid Architecture,and Experiences in Automated Audit Analysis[C].In: Smyth G ed.Proc of the IFIP TC6 / TC1 1 International Conference on Communications and Multimedia Security.Essen, Germany : West- view Press. 1996.
  • 8Joachims T.Making Large-Scale SVM Learning Practical[R].LS VIII- Report LS8-Re-port,University of Dortmund, 1998.
  • 9Joachims T.SVMlight is an implementation of Support Vector Machines (SVMs) in C.http://ais.gmd.de/-thorsten/svm_light.University of Dor- tmund.Collaborative Research Center on"Complexity Reduction in Mu- ltivariate Data" (SFB475),2000.
  • 10Joachims T.Making Large-Scale SVM Learning Practical[R].LS VIII- Report,KSS-Re-port,University of Dortmund, 1998.

共引文献39

同被引文献21

  • 1何倩.[D].桂林:桂林电子工业学院,2004—03.
  • 2Andrew H Sung.Identify important features for intrusion detection using support vector machines and neural networks[C].In:IEEE Proceedings of the 2003 Symposium on Application and the Internet, 2003.
  • 3Mukkamala Srinivas, Janoski Guadalupe, Sung Andrew.Intrusion detection using neural networks and support vector machines[C].In:Proceedings of the International Joint Conference on Neural Networks, vol.2,2002 : 1702-1707.
  • 4Botha Martin,von Solms Rossouw.Utilizing fuzzy logic and trend analysis for effective intrusion detection[J].Computers and Security, 2003 ; 22 (5) : 423-434.
  • 5Bala Jerzy,Baik Sung,Hadjarian Ali et al.Application of a distributed data mining approach to network intrusion detection[C].In:Proceedings of the Intematlonal Conference on Autonomous Agents, 2002:1419-1420.
  • 6Hossain Mahmood,Bridges Susan M,Vaughn Jr et al.Adaptive intrusion detection with data mining[C].In :Proc of the IEEE Int Conf on Systems,Man and Cybernetics,vol.4,2003:3097-3103.
  • 7Tim Bass.Intrusion Detection Systems Multisensor Data Fusion Creating Cyberspace Situational Awareness.http ://citeseer. nj.nec.com/ bass00intrusion.html 2001.
  • 8Wang Yong,Yang Huihua,Wang Xingyu.Distributed Intrusion Detection System Based on Data Fusion Method[C].In:The 5th World Congress on Intelligent Control and Automation(WCICA'04),Hangzhou, China, 2004.
  • 9J A K Suykens,T Van Gestel,J De Brabanter et al.Least Squares Support Vector Machines[M].Singapore :World Scientific,2002.
  • 10Matthew V Mahoney,Philips K Chan.An analysis of the 1999 DARPA/Lincoln laboratories evaluation data for network anomaly detection[R].Florida Institute of Technology Technical Report TR-CS2003-02, http ://www.cs.fit.edu/-mmahoney/.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部