期刊文献+

股价服从跳—扩过程证券组合的随机微分对策 被引量:1

Stochastic Differential Portfolio Games for the Price of Stocks with Jump-diffusion Processes
在线阅读 下载PDF
导出
摘要 在股价服从跳 扩过程时,同时考虑流通性这一因素水平,研究两人零和随机微分对策问题,在采用对数效用时分别获得了投资者的最优投资策略。 Under the stochostic coefficient and the liquidity factor is consided, we studied two persons zerosum differential games for the price of stocks with jumpdiffusion processes, for the logorithmic utility, the optimal strategy is obtained for each investors.
出处 《工程数学学报》 CSCD 北大核心 2003年第2期65-71,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金资助(69904008).
关键词 证券投资组合 跳跃-扩散过程 随机微分对策 效用函数 It'o过程 secarity portfolio jump-diffusion processes stochastic differential games utility funcstion It'o processes.
  • 相关文献

参考文献12

  • 1吴受章.应用最优控制[M].西安:西安交通大学出版社,1897..
  • 2Ellottr. The existence of value in stochastic differential games[J]. SIAM J Contr and Opt,1976;14:85-94.
  • 3Sabrina Mulinacci. An approximation of American option prices in a jump-diffusion model[J]. Stochastic Procosses and Applications, 1996 ; 62 : 1 - 17.
  • 4Alan, King J. Asymmetric risk measures and tracking models for portfolio optimization under unceaainy[J]. Annals of oporatiom Research, 1993 ;445 : 166 - 177.
  • 5Erik Ordentlich, Thonma M. Cover Max-min Optimal Investing, 1996; 127 - 133.
  • 6Gerard Genrlotte. Optimal portfolio choice under incomplete information [ J ]. Journal of Finance, 1986 ; 3 : 733 -749.
  • 7Alanl lewis. A simple alogorthim for the portfolio selection problem[J]. Journal of Finance, 1998; 1:71 -82.
  • 8Sid Browne Risk-constrained dynamic active portfoho management[ J ]. Management Science, 2000 ; 9 : 1188 - 1199.
  • 9Gottlieb G. An optimal betting strategy for repeated games[ J]. J Appl Prob, 1985 ;22:87- 795.
  • 10Duffie D. Dynamic asset pricing theory[M]. 2nd ed Princeton University Press. Princeton NJ,1996.

共引文献1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部