摘要
设p为奇素数,αn为等幂和表成2p进制的末位数字,获得等幂和的同余性与等幂和的周期性,从而证明当p-1×m时,αn是最小正周期为4p的周期数列;当p-1│m时,αn是最小正周期为4p2的周期数列,并且完全确定当等幂和表成10进制时的末位数字αn,等幂和的数论性质对G.Giuga猜想等研究有着重要的作用.
Let p be odd prime number, an be last digits of sum of equal powers at 2p system. The coresidual property and periodicity of sum of equal powers are obtained. It is proved that an is periodic numeral series of minimum positive period of 4p when p - 1×m, and periodic numeral series of minimum positive period of 4 p2 when p - 1│m. The last digits of sum of equal powers at decimal system are determined. The sum of equal powers plays an important role in the study of Giuga guess.
出处
《广西科学》
CAS
2003年第1期4-7,共4页
Guangxi Sciences
基金
广西民族学院重点科研项目资助(02SXX00001)。