期刊文献+

一种带有期望因子的蝙蝠算法 被引量:4

A Bat Algorithm with Expectation Factor
在线阅读 下载PDF
导出
摘要 面对经典蝙蝠算法(BAT ALGORITHM,BAT)容易过早收敛、收敛效果差的问题,提出一种带有期望因子的新型蝙蝠算法,将蝙蝠的觅食行和L′evy飞行特征相结合来模拟蝙蝠的捕食过程,并在迭代公式中加入期望因子,进而采用全新的更新频率、速度、位置的方式,再利用L′evy的飞行特性使得该新型算法更容易趋向目标最优值。通过标准测试函数对其提出的算法进行仿真测试,并与布谷鸟搜索算法、粒子群算法、基本蝙蝠算法相比较。仿真结果表明该算法增强了原算法的收敛精度以及寻找最优目标的能力,性能明显优于其他3种算法,是一种优化高度非线性、复杂函数问题的有效手段。 Facing the shortcoming of the classic bat algorithm which is easy to premature convergence and the convergence precision is low. We put forward a new bat algorithm, combining bats' foraging behavior with L′evy flying characteristics to simulate predation process of bats, adding the expectation factors into the iteration formula, adopting the new way to update frequency, speed and location and using L′evy flight characteristics to make the new algorithm easier to tend to the optimal target value. The proposed algorithm is tested through standard test functions. The simulation results show that the algorithm improves the astringency and ability to search for the optimal target of the original algorithm. The performance is better than the other three algorithms. It is a good method of solving highly nonlinear and complex function optimization problems.
出处 《控制工程》 CSCD 北大核心 2016年第S1期83-87,共5页 Control Engineering of China
关键词 蝙蝠算法 L′evy飞行 期望因子 布谷鸟搜索算法 粒子群算法 Bat algorithm L′evy flight expectation factor cuckoo search algorithm PSO algorithm
  • 相关文献

参考文献12

  • 1YANG Xin-she.A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization . 2010
  • 2郑巧燕,莫愿斌,刘付永,马彦追.一种小规模多种群布谷鸟算法[J].计算机应用与软件,2014,31(10):278-280. 被引量:13
  • 3刘长平,叶春明.具有混沌搜索策略的蝙蝠优化算法及性能仿真[J].系统仿真学报,2013,25(6):1183-1188. 被引量:76
  • 4包广清,毛开富.改进粒子群算法及其在风电系统中的应用[J].控制工程,2013,20(2):262-266. 被引量:20
  • 5郝万君,强文义,胡林献,肖刚.基于改进粒子群算法的PID参数优化与仿真[J].控制工程,2006,13(5):429-432. 被引量:23
  • 6Aziz Ouaarab,Bela?d Ahiod,Xin-She Yang.??Discrete cuckoo search algorithm for the travelling salesman problem(J)Neural Computing and Applications . 2014 (7-8)
  • 7Xin-She Yang,Amir Hossein Gandomi.??Bat algorithm: a novel approach for global engineering optimization(J)Engineering Computations . 2012 (5)
  • 8Koffka Khan,Ashok Sahai.??A Comparison of BA, GA, PSO, BP and LM for Training Feed forward Neural Networks in e-Learning Context(J)International Journal of Intelligent Systems and Applications(IJISA) . 2012 (7)
  • 9Xin-She Yang,Suash Deb.Multiobjective cuckoo search for design optimization[J]. Computers and Operations Research . 2011
  • 10Clifford T. Brown,Larry S. Liebovitch,Rachel Glendon.??Lévy Flights in Dobe Ju/’hoansi Foraging Patterns(J)Human Ecology . 2007 (1)

二级参考文献29

  • 1Gorez R.A survey of PID auto-tuning methods[J].Journal A,1997,38(1):3-10.
  • 2刘益剑,张建明,王树青.基于PSO算法的PID控制器参数优化设计[C].杭州:第五届全球智能控制与自动化大会,2004.
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc IEEE Int Conf Neural Networks[C].Piscataway:IEEE Press,1995.
  • 4Eberhart R C,Shi Y.Particle swarm optimization:developments applications and resources[A].In Proc Congr Evolutionary Computation[C].Piscataway NJ:IEEE Press,2001.
  • 5Parsopoulos K E,V rahatis M N.Recent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002,23(1):235-306.
  • 6Liu L,Mao Z.Water turbines PID controller based on genetic algorithm[J].Automation of Electric Power Systems,1997,21(12):41-43.
  • 7Toscano R.A simple robust PI/PID controller design via numerical optimization approach[J].Journal of Process Control,2005,15(1):81-88.
  • 8Ho W K,Hang C C,Cao L S.Tuning of pid controller based on gain and phase margin specification[J].Automatica,1995,31(3):497-502.
  • 9Astrom K J,Hagglund T.PID controller 2nd ed[M].USA:Instrument of Society of America,1995.
  • 10R. J. Kuo, S. Y. Hong, Y. C. Huang. Integration of particle swarm optimization-based fuzzy neural network and artificial neural net- work for supplier selection [ J ], Applied Mathematical Modelling, 2010,34(12) : 3976-3990.

共引文献132

同被引文献59

引证文献4

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部