期刊文献+

PCA+CHMM在设备性能退化状态识别中的应用研究 被引量:4

Application of PCA + CHMM in equipment performance degradation state recognition
在线阅读 下载PDF
导出
摘要 为了准确识别机械设备当前所处的退化状态,研究了一种基于PCA(主成分分析)和CHMM(连续型隐马尔可夫模型)结合的性能退化状态识别方法。首先提取设备振动信号全寿命周期的时域、频域、时频域的特征,经过初步筛选后组成新的特征集,使用PCA方法对其进行降维处理;然后利用降维后的数据,训练一个全寿命周期CHMM用来确定退化状态数目,再针对每个退化状态训练一个CHMM,通过比较观测序列处于各个模型下的似然概率值判断设备当前所处的退化状态;最后通过实验对比了PCA+CHMM和PCA+SVM、PCA+KNN、PCA+CART方法的各退化状态识别准确率,结果表明PCA+CHMM的平均识别准确率最高、识别效果较好,适用于设备退化状态的识别。 In order to accurately identify the degradation state of mechanical equipment,this paper researched a recognition method of performance degradation state based on PCA( principal component analysis) and CHMM( continuous hidden Markov model). Firstly,it extracted the vibration signal’s time domain,frequency domain and time-frequency domain features in full life cycle,then constructed a new feature set by screening the features,then performed PCA dimensionality reduction for this set. Secondly,it trained a full life cycle CHMM to determine the number of degraded states by using of reduced dimension feature data,and then trained a CHMM for each degraded state,judged the degradation state of the device by comparing the likelihood probability of the observation sequence under each model. Finally,it compared the accuracy of PCA + CHMM and PCA + CHM,PCA + KNN and PCA + CART methods that to identify each degraded state. The results show that the average recognition accuracy of PCA + CHMM is the highest,the recognition effect is good,and it is suitable for the identification of device degraded state.
作者 钟飞 宁芊 周新志 赵成萍 Zhong Fei;Ning Qian;Zhou Xinzhi;Zhao Chengping(College of Electronics & Information Engineering,Sichuan University,Chengdu 610065,China;Science & Technology on Electronic Information Control Laboratory,Chengdu 610036,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第1期136-139,共4页 Application Research of Computers
基金 国家"973"计划资助项目(2013CB328903)
关键词 性能退化 主成分分析 连续隐马尔可夫模型 特征降维 退化状态识别 performance degradation principal component analysis continuous hidden Markov model feature dimensionality reduction degenerate state recognition
  • 相关文献

参考文献6

二级参考文献69

  • 1王志,艾延廷,沙云东.基于BP神经网络的航空发动机整机振动故障诊断技术研究[J].仪器仪表学报,2007,28(S1):168-171. 被引量:38
  • 2高守传,黄春琳,粟毅.主元分析法去除瞬态系统收发耦合波研究[J].电子与信息学报,2004,26(9):1461-1467. 被引量:3
  • 3李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,22(4):131-134. 被引量:24
  • 4Patil M S, Mathew J, RajendraKumar P K. Bearing signature analysis as a medium for fault detection: a review[ J ]. Journal of Tribology, 2008, 130( 1 ) : 014001 - 1 -7.
  • 5Antoni J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions [ J ]. Journal of Sound and Vibration, 2007, 304 ( 3 - 5 ) : 497 - 529.
  • 6Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets [ J ]. NDT&E International, 2002, 35(3) : 197 -205.
  • 7Ekici S, Yildirim S, Poyraz M. Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition [J]. Expert Systems with Applications, 2008, 34 ( 4 ) : 2937 - 2944.
  • 8Rabiner L R, Juang B H. An introduction to hidden Markov models[ J]. IEEE ASSP magazine, 1986, 3 ( 1 ) : 4 - 16.
  • 9Rabiner L R. A tutorial on hidden markov models and selected applications in speech recognition [ J ]. Proceedings of the IEEE, 1989, 77(2): 257-286.
  • 10Hasan O,Kenneth L A.HMM-based fault detection and diagnosis scheme for rolling element bearings[J].Journal of Vibration and Acoustics,2005,127 (4):299-306.

共引文献95

同被引文献45

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部