期刊文献+

基于改进萤火虫优化算法的多阈值彩色图像分割 被引量:17

Multilevel Color Image Segmentation Based on Improved Glowworm Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 为了提高彩色图像的分割效果,提出一种基于改进的萤火虫优化(IGSO)算法的彩色图像多阈值分割方法,该方法以Kapur熵为目标函数。针对基本萤火虫优化(GSO)算法进化后期收敛速度慢和求解精度低的问题,采用自适应步长和添加全局信息两种策略,提出了一种改进的萤火虫优化(IGSO)算法。IGSO算法根据步长和萤火虫的移动方向对萤火虫算法收敛性的影响,在萤火虫移动过程中引入全局信息,采用随着迭代次数和搜索空间维数自适应变化步长的策略,来提高收敛性能。实验结果表明,该方法能够较好地对彩色图像进行分割,其性能优于基本的萤火虫优化(GSO)算法、改进的量子行为粒子群优化算法(CQPSO)和改进的细菌觅食算法(MBF)。 In order to improve the segmentation effect of color image,a novel multilevel color image segmentation method was presented based on an improved glowworm swarm optimization(IGSO)algorithm which uses Kapur's entropy.Aiming at the problem that the glowworm swarm optimization algorithm has low convergence speed and accuracy in the later period,an improved glowworm swarm optimization(IGSO)algorithm was presented based on adaptive step and global information.Depending on the effect of step size and the direction of movement on the convergence,IGSO algorithm improves convergence by adding global information and adaptive step with iterations and dimension of the search space during the course of movement.The experimental results show that it is a better method for multilevel color image segmentation compared with GSO algorithm,improved quantum-behaved particle swarm optimization(CQPSO)algorithm and modified bacterial foraging(MBF)algorithm.
出处 《计算机科学》 CSCD 北大核心 2017年第S1期206-211,共6页 Computer Science
基金 国家自然科学基金项目(51204077)资助
关键词 萤火虫优化算法 彩色图像分割 自适应步长 全局信息 Glowworm swarm optimization algorithm Color image segmentation Adaptive step Global information
  • 相关文献

参考文献1

二级参考文献7

  • 1Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 2Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 3Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 4Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 5Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 6Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 7Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.

共引文献310

同被引文献154

引证文献17

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部